WOLFRAM

The Wolfram|Alpha Blog is now part of the Wolfram Blog. Please update your subscriptions and follow us here.
Computation & Analysis

Thrust Supersonic Car Engineering Insights: Applying Multiparadigm Data Science

Having a really broad toolset and an open mind on how to approach data can lead to interesting insights that are missed when data is looked at only through the lens of statistics or machine learning. It’s something we at Wolfram Research call multiparadigm data science, which I use here for a small excursion through calculus, graph theory, signal processing, optimization and statistics to gain some interesting insights into the engineering of supersonic cars.

Computation & Analysis

Cleaning and Structuring Large Datasets: Web Scraping with the Wolfram Language, Part 2

In my previous post, I demonstrated the first step of a multiparadigm data science workflow: extracting data. Now it's time to take a closer look at how the Wolfram Language can help make sense of that data by cleaning it, sorting it and structuring it for your workflow. I'll discuss key Wolfram Language functions for making imported data easier to browse, query and compute with, as well as share some strategies for automating the process of importing and structuring data. Throughout this post, I'll refer to the US Election Atlas website, which contains tables of US presidential election results for given years:

Computation & Analysis

Data Science + Engineering: Building a Centralized Computation Hub

As the technology manager for Assured Flow Solutions, Andrew Yule has long relied on the Wolfram Language as his go-to tool for petroleum production analytics, from quick computations to large-scale modeling and analysis. “I haven’t come across something yet that the Wolfram Language hasn’t been able to help me do,” he says. So when Yule set out to consolidate all of his team’s algorithms and data into one system, the Wolfram Language seemed like the obvious choice.
Education & Academic

The 2018 Wolfram Summer School: A Recap

The 16th annual Wolfram Summer School was another successful immersive education adventure made possible by the power of the Wolfram Language for rapid scientific exploration and software development. A select group of 62 participants from all around the world (ranging from advanced high-school students to postgraduate students and beyond) worked on a variety of computational projects related to science, technology and innovation and educational innovation. The three-week program was packed with cutting-edge technologies, intellectual discussions, innovation in action and community building.
Computation & Analysis

Former Astronaut Creates Virtual Copilot with Wolfram Neural Nets and a Raspberry Pi

For the past two years, FOALE AEROSPACE has been on an exhilarating journey to create an innovative machine learning–based system designed to help prevent airplane crashes, using what might be the most understated machine for the task—the Raspberry Pi. The system is marketed as a DIY kit for aircraft hobbyists, but the ideas it’s based upon can be applied to larger aircraft (and even spacecraft!). FOALE AEROSPACE is the brainchild of astronaut Dr. Mike Foale and his daughter Jenna Foale. Mike is a man of many talents (pilot, astrophysicist, entrepreneur) and has spent an amazing 374 days in space! Together with Jenna (who is currently finishing her PhD in computational fluid dynamics), he was able to build a complex machine learning system at minimal cost. All their development work was done in-house, mainly using the Wolfram Language running on the desktop and a Raspberry Pi. FOALE AEROSPACE’s system, which it calls the Solar Pilot Guard (SPG), is a solar-charged probe that identifies and helps prevent loss-of-control (LOC) events during airplane flight. Using sensors to detect changes in the acceleration and air pressure, the system calculates the probability of each data point (an instance in time) to be in-family (normal flight) or out-of-family (non-normal flight/possible LOC event), and issues the pilot voice commands over a Bluetooth speaker. The system uses classical functions to interpolate the dynamic pressure changes around the airplane axes; then, through several layers of Wolfram’s automatic machine learning framework, it assesses when LOC is imminent and instructs the user on the proper countermeasures they should take.
Current Events & History

Citizen Data Science with Civic Hacking: The Safe Drinking Water Data Challenge

Code for America’s National Day of Civic Hacking is coming up on August 11, 2018, which presents a nice opportunity for individuals and teams of all skill levels to participate in the Safe Drinking Water Data Challenge—a program Wolfram is supporting through free access to Wolfram|One and by hosting relevant structured datasets in the Wolfram Data Repository.

According to the state of California, some 200,000 residents of the state have unsafe drinking water coming out of their taps. While the Safe Drinking Water Data Challenge focuses on California, data science solutions could have impacts and applications for providing greater access to potable water in other areas with similar problems.

The goal of this post is to show how Wolfram technologies make it easy to grab data and ask questions of it, so we’ll be taking a multiparadigm approach and allowing our analysis to be driven by those questions in an exploratory analysis, a way to quickly get familiar with the data.
Education & Academic

Mathematics Genealogy Project: Computational Exploration in the Wolfram Language

The Mathematics Genealogy Project (MGP) is a project dedicated to the compilation of information about all mathematicians of the world, storing this information in a database and exposing it via a web-based search interface. The MGP database contains more than 230,000 mathematicians as of July 2018, and has continued to grow roughly linearly in size since its inception in 1997.

In order to make this data more accessible and easily computable, we created an internal version of the MGP data using the Wolfram Language’s entity framework. Using this dataset within the Wolfram Language allows one to easily make computations and visualizations that provide interesting and sometimes unexpected insights into mathematicians and their works. Note that for the time being, these entities are defined only in our private dataset and so are not (yet) available for general use.
Announcements & Events

New Wolfram Language Books: Don’t Stop Learning Just Because It’s Summer

It’s not really late summer unless you’re armed with an apple and a good book. There’s been a recent slew of incredible books utilizing the capabilities of the Wolfram Language that make sure your coding knowledge never stops growing and your reading list stays stocked. (And be sure to check the farmers’ market for those apples.)