One of the many beautiful aspects of mathematics is that often, things that look radically different are in fact the same—or at least share a common core. On their faces, algorithm analysis, function approximation and number theory seem radically different. After all, the first is about computer programs, the second is about smooth functions and the third is about whole numbers. However, they share a common toolset: asymptotic relations and the important concept of asymptotic scale.
By comparing the “important parts” of two functions—a common trick in mathematics—asymptotic analysis classifies functions based on the relative size of their absolute values near a particular point. Depending on the application, this comparison provides quantitative answers to questions such as “Which of these algorithms is fastest?” or “Is function a good approximation to function g?”. Version 11.3 of the Wolfram Language introduces six of these relations, summarized in the following table.