Wolfram Computation Meets Knowledge



Fire in the Hole! Exploring the Yellowstone Calderas with GeoGraphics and USGS Data

Yellowstone National Park has long been known for its active geysers. These geysers are a surface indication of subterranean volcanic activity in the park. In fact, Yellowstone is actually the location of the Yellowstone Caldera, a supervolcano: a volcano with an exceptionally large magma reservoir. The park has had a history of many explosive eruptions over the last two million years or so.

I’ve found that the United States Geological Survey (USGS) maintains data on the various volcanic calderas and related features, which makes it perfect for computational exploration with the Wolfram Language. This data is in the form of SHP files and related data stored as a ZIP archive. Thanks to the detail of this available data, we can use the Wolfram Language and, in particular, GeoGraphics to get a better picture of what this data is telling us.

Current Events & History

Get Ready for the Total Solar Eclipse of 2017

On August 21, 2017, an event will happen across parts of the Western Hemisphere that has not been seen by most people in their lifetimes. A total eclipse of the Sun will sweep across the face of the United States and nearby oceans. Although eclipses of this type are not uncommon across the world, the chance of one happening near you is quite small and is often a once-in-a-lifetime event unless you happen to travel the world regularly. This year, the total eclipse will be within driving distance of most people in the lower 48 states.

New Books on Applications of the Wolfram Language

We're always excited to see new books that illustrate applications of Wolfram technology in a wide range of fields. Below is another set of recently published books using the Wolfram Language to explore computational thinking. From André Dauphiné's outstanding geographical studies of our planet to Romano and Caveliere's work on the geometric optics that help us study the stars, we find a variety of fields served by Wolfram technology.

New Wolfram Language Books

We are constantly surprised by what fascinating applications and topics Wolfram Language experts are writing about, and we're happy to again share with you some of these amazing authors' works. With topics ranging from learning to use the Wolfram Language on a Raspberry Pi to a groundbreaking book with a novel approach to calculations, you are bound to find a publication perfect for your interests.

Solar Eclipses from Past to Future, Earth to Jupiter

You may have heard that on March 20 there was a solar eclipse. Depending on where you are geographically, a solar eclipse may or may not be visible. If it is visible, local media make a small hype of the event, telling people how and when to observe the event, what the weather conditions will be, and other relevant details. If the eclipse is not visible in your area, there is a high chance it will draw very little attention. But people on Wolfram Community come from all around the world, and all---novices and experienced users and developers---take part in these conversations. And it is a pleasure to witness how knowledge of the subject and of Wolfram technologies and data from different parts of the world are shared.

Built to Last: Understanding Earthquake Engineering

Last week, the world was shocked by the news of massive earthquakes and devastating tsunamis in Japan. The event is still unfolding and could become one of the most tragic natural disasters in recent history. Scientific understanding and modeling of complicated physical phenomena and engineering based on such analysis is imperative to prevent unnecessary loss of life from natural disasters. In this post, we'll explore the science behind earthquakes to better understand why they happen and how we prepare for them. Note: The dynamic examples in this post were built using Mathematica. Download the Computable Document Format (CDF) file provided to interact with the simulations and further explore the topics. First, let's start with locations. The following visualization is created from the U.S. Geological Survey (USGS) database of earthquakes that occurred between 1973 and early 2011 whose magnitudes were over 5. As you can clearly see, the epicenters are concentrated in narrow areas, usually on the boundaries of tectonic plates. In particular, there are severe seismic activities around the Pacific, namely the "Ring of Fire". Unfortunately, Japan is sitting right in the middle of this highly active area.

Mathematica and Natural Resources Research

Yu-Feng Lin, a hydrogeologist at the Illinois State Water Survey, is on a mission to tackle a top national research priority using Mathematica. In this video, Lin details why this project could only be done in Mathematica. Because of the importance of groundwater recharge and discharge in the hydrological cycle, the U.S. National Research Council (NRC) deems research on them to be of critical priority. However, their rates and patterns are so complex that it takes years of study to estimate them.