Wolfram Computation Meets Knowledge

Shattering the Plane with Twelve New Substitution Tilings Using 2, φ, ψ, χ, ρ

The sqrt(χ) substitution tiling fractal

Similar Triangle Dissections

Version 12 of the Wolfram Language introduces solvers for geometry problems. The documentation for the new function GeometricScene has a neat example showing the following piece of code, with GeometricAssertion calling for seven similar triangles:

Sqrt(ρ) substitution tiling
&#10005

o=Sequence[Opacity[.9],EdgeForm[Black]];plasticDissection=RandomInstance[GeometricScene[{a,b,c,d,e,f,g},{
a=={1,0},e=={0,0},Line[{a,e,d,c}],
p0==Polygon[{a,b,c}],
p1==Style[Polygon[{b,d,c}],Orange,o],
p2==Style[Polygon[{d,f,e}],Yellow,o],
p3==Style[Polygon[{b,f,d}],Blue,o],
p4==Style[Polygon[{g,f,b}],Green,o],
p5==Style[Polygon[{e,g,f}],Magenta,o],
p6==Style[Polygon[{a,e,g}],Purple,o],
GeometricAssertion[{p0,p1,p2,p3,p4,p5,p6},"Similar"]}],RandomSeeding->28]

The coordinates of the point use the plastic constant , the real root of .

{Chop
&#10005

{Chop[c/.plasticDissection["Points"]],N[-Sqrt[{8,12,8}.(ρ^{0,1,2})]]}

Combinations of (rho) build the entire triangle, putting it in the algebraic number field . Call this the dissection. The length of an edge labeled is .

Sqrt(ρ) substitution tiling
&#10005

dissectionDiagram[SqrtRho,400]

In the initialization section of the notebook, SqrtRho is defined to be the list consisting of the root, the vertices in terms of that root, the subtriangles and the symbol. The function dissectionDiagram uses these values to draw the triangles with the edge lengths equal to powers of .

SqrtRho
&#10005

SqrtRho

The Cartesian coordinates can be found with SqrtSpace, defined in the initialization section.

N
&#10005

N[SqrtSpace[SqrtRho[[1]],SqrtRho[[2]]]]

Pisot Numbers

The plastic constant is the smallest Pisot number, an algebraic integer greater than 1 with conjugate elements in the unit disk. Here are the first four and the ninth Pisot numbers, showing the value as a point outside and the conjugate elements inside.

Pisot numbers
&#10005

Text[Grid[Transpose[{Style[TraditionalForm[#],10],Max[N[Norm/@(x/.Solve[#==0])]],
Graphics[{Point[ReIm/@(x/.Solve[#==0])], Circle[{0,0},1],Red,
Disk[{0,0},.05]}, ImageSize-> 95]}&/@{-1-x+x^3,-1-x^3+x^4,-1+x^2-x^3-x^4+x^5,-1-x^2+x^3,-1-x^2-x^4+x^5}],Frame-> All]]

The second Pisot number has a real conjugate element (chi), with .

Grid
&#10005

Grid[{N[#,15],TraditionalForm[MinimalPolynomial[#,x]]}&/@{Root[-1-#1^3+#1^4 &,2], -1/Root[-1-#1^3+#1^4 &,1]}, Frame-> All]

Here is the second neat example from the documentation mentioned in the opening paragraph. Decompose a polygon into similar triangles:

RandomInstance
&#10005

RandomInstance[GeometricScene[{a, b, c, d, e, o},
  {Polygon[{a, b, c, d, e}],
   p1 == Style[Triangle[{a, b, o}], Red],
   p2 == Style[Triangle[{b, o, c}], Blue],
   p3 == Style[Triangle[{c, d, o}], Yellow],
   p4 == Style[Triangle[{d, o, e}], Purple],
   p5 == Style[Triangle[{e, o, a}], Orange],
   GeometricAssertion[{p1, p2, p3, p4, p5}, "Similar"] } ], RandomSeeding -> 6] 

That solution can be extended to nine similar triangles.

Sqrt(χ) substitution tiling
&#10005

o=Sequence[Opacity[.9],EdgeForm[Black]];RandomInstance[GeometricScene[{a,b,c,d,e,f,g,h,i},{
h=={0,0},d=={1,0},p0==Polygon[{d,a,i}],
p1==Style[Polygon[{a,b,f}],Magenta,o ],
p2==Style[Polygon[{b,f,g}],Yellow,o],
p3==Style[Polygon[{f,g,e}],Purple,o],
p4==Style[Polygon[{e,g,h}],Blue,o],
p5==Style[Polygon[{h,c,g}],Cyan,o],
p6==Style[Polygon[{d,h,c}],Red,o],
p7==Style[Polygon[{c,g,b}],Orange,o],
p8==Style[Polygon[{a,e,i}],Green,o],
GeometricAssertion[{p0, p1,p2,p3,p4,p5,p6,p7,p8},"Similar"],
Line[{a,b,c,d}],Line[{a,f,e}],Line[{i,e,h,d}]}],RandomSeeding->85 ]

These triangles are built with ; call this the dissection. The length of an edge is , where is the label on the edge.

Sqrt(χ) substitution tiling
&#10005

dissectionDiagram[SqrtChi, 480]

The Golden and Supergolden Ratios

Related to and is the golden ratio, introduced in the book Liber Abaci (1202) by Leonardo Bonacci of Pisa. Early in the book is the Arabic number system.

First European publication of the Arabic number system

Later in Liber Abaci is the rabbit problem, leading to what is now called the Fibonacci sequence. The name “Fibonacci” was created in 1838 from “filius Bonacci” or “son of Bonacci.”

First publication of the Fibonacci sequence

This shows the Fibonacci rabbit sequence and its relation to (phi), the golden ratio.

ϕ=GoldenRatio
&#10005

ϕ=GoldenRatio;
rabbitseq=LinearRecurrence[{1,1},{1,1},120]; 
Grid[{
{"rabbit sequence",Row[Append[Take[rabbitseq,16],"…"],","]},
{"successive ratios",N[rabbitseq[[-1]]/rabbitseq[[-2]],50]},
{"golden ratio",N[ϕ,50]}
},Frame->All]

In 1356, Narayana posed the following question in his book Ganita Kaumudi: “A cow gives birth to a calf every year. In turn, the calf gives birth to another calf when it is three years old. What is the number of progeny produced during twenty years by one cow?”

We can use Mathematica to show the Narayana cow sequence and its relation to (psi), the supergolden ratio.

ψ=Root
&#10005

ψ=Root[-1-#1^2+#1^3&,1];
cowseq=LinearRecurrence[{1,0,1},{1,2,3},180]; 
Grid[{
{"cow sequence",Row[Append[Take[cowseq,16],"..."],","]},
{"successive ratios",N[cowseq[[-1]]/cowseq[[-2]],50]},
{"supergolden ratio",N[ψ,50]}
},Frame->All]

The ratios of consecutive terms in the Padovan sequence and Perrin sequence both tend to , as shown in Fibonacci and Padovan Spiral Identities and Padovan’s Spiral Numbers. This shows these two sequences with the rabbit and cow sequences:

{Padovan, Perrin, Narayana, Fibonacci}
&#10005

padovan=LinearRecurrence[{0,1,1}, {2,2,3}, 15];perrin=LinearRecurrence[{0,1,1}, {2,3,2}, 15];
narayana=LinearRecurrence[{1,0,1},{1,2,3},15]; 
fibonacci=LinearRecurrence[{1,1},{1,1},15]; 
Column[{TextGrid[Transpose[{{Padovan,Perrin,Narayana, Fibonacci},
Row[Append[#,"…"],","]&/@{padovan,perrin,narayana, fibonacci}}],Frame-> All],
ListLinePlot[Rest[#]/Most[#]&/@{padovan,perrin,narayana, fibonacci},
 PlotRange->{1,2},GridLines->{{}, {ρ,ψ,ϕ}},ImageSize-> Medium]}]

Constructing Geometric Figures

The powers , and of the golden ratio are the side lengths of the Kepler right triangle. The golden ratio (or Fibonacci rabbit constant) is the Pisot number . By using Pisot numbers (the plastic constant), , (the supergolden ratio) or , the same process makes a 120° angle, as does , the tribonacci constant.

Kepler triangle extensions
&#10005

Grid[Partition[niceTriangle/@nice[[{2,11,13,8,14,12}]],2]]

Almost all the Platonic and Archimedean solids can be built with the octahedral group acting on or the icosahedral group acting on . Exceptions:

  1. The snub cube needs a root of (tribonacci constant).
  2. The snub dodecahedron neets a root of
  3. The snub icosidodecadodecahedron needs an element of (not shown).

This builds the first two snubs with vertex coordinates in the given algebraic number fields.

Snub cube and snub dodecahedron
&#10005

scroot=Root[-1-#1-#1^2+#1^3&,1];
{scv,scf}=Normal[];  scp=SqrtSpace[scroot, scv];
sdroot=Root[-GoldenRatio-#1-#1^2+#1^3&,1];
{sdv,sdf}=Normal[];sdp=SqrtSpace[sdroot, sdv];
GraphicsRow[{
Graphics3D[{EdgeForm[Thick],Opacity[.9],Polygon[scp[[#]]]&/@scf}, Boxed-> False, ViewAngle-> Pi/9],Graphics3D[{EdgeForm[Thick],Opacity[.9],Polygon[sdp[[#]]]&/@sdf}, Boxed-> False,ViewAngle-> Pi/10]},ImageSize-> 530]

If two roots have the same discriminant () they usually belong to the same algebraic number field. Here are two polynomials for the tribonacci constant.

Similar rectangle dissections
&#10005

Grid[{TraditionalForm[MinimalPolynomial[#,x]],NumberFieldDiscriminant[#]}&/@{Root[-1-#1-#1^2+#1^3&,1], Root[-2+2#1-2#1^2+#1^3&,1]},Frame-> All]

The tribonacci constant is part of an odd series of polynomials tying together Heegner numbers and the j-function in a way that leads to extreme almost integers in multiple ways.

heegnergrid
&#10005

heegnergrid

The silver ratio also leads to interesting geometry. If a sheet of A4 paper is folded in half, the rectangles are similar to the original rectangle. The A4 rectangle can be perfectly subdivided into smaller distinct A4 rectangles in many strange ways. The values 2, , and are all involved in dissections of squares and similar rectangles.

Grid
&#10005

Grid[{{A4rect,psirect},{goldenrect, plasrect}}]

These dissections can be found in Version 12.

Similar rectangle dissection
&#10005

o=Sequence[Opacity[1],EdgeForm[Black]];RandomInstance[GeometricScene[{a,b,c,d,e,f,g, h},{
a=={0,0},d=={0,1}, 
p01==Polygon[{g,h,a}],p02==Polygon[{a,e,g}],
p11==Style[Polygon[{c,b,a}],Orange,o],
p12==Style[Polygon[{a,d,c}],Orange,o],
p21==Style[Polygon[{c,d,e}],Yellow,o],
p22==Style[Polygon[{e,f,c}],Yellow,o],
p31==Style[Polygon[{h,b,f}],LightBlue,o],
p32==Style[Polygon[{f,g,h}],Blue,o],
GeometricAssertion[{p01,p02,p11,p12,p21,p22,p31,p32},"Similar"]}],RandomSeeding->7]

The third root leads to solutions for the disk-covering problem and the Heilbronn triangle problem.

Melissen
&#10005

Row[{Melissen12, Heilbronn12}]

Infinite Series Series

Many of the numbers introduced so far can be expressed as infinite series of negative powers of themselves.

seriesgrid
&#10005

seriesgrid

A 45° right triangle of area 2 can be used to prove the first series by splitting smaller and smaller similar triangles. Or use the infinite similar triangle dissection shown here.

Infinite 2 triangle dissection
&#10005

start=SqrtSpace[2,{{{18},{0}},{{-18},{0}},{{9},{63}}/8,{{18},{0}},{{-81},{63}}/32}];
Graphics[{Line[Join[start,Flatten[Table[{(2^a -1)/2^a start[[1]]+(1)/2^a start[[2]],
(2^a -1)/2^a start[[1]]+(1)/2^a start[[5]]},{a,1,7}],1]]] }]

The infinite series for can also be illustrated with an infinite set of similar triangles.

Infinite φ triangle dissection
&#10005

forphi=Normal[List];
Graphics[{EdgeForm[Black],{Lighter[Hue[10.8Area[Polygon[#]]]], Polygon[#],Black,
With[{log=Round[Log[GoldenRatio,Area[Polygon[#]]]]},If[log>-10,Text[log,Mean[#]]]]}&/@forphi}]

The infinite series for can be illustrated with an infinite set of similar Rauzy fractals.

Infinite cow fractal triangle dissection
&#10005

r=Root[-1-#1^2+#1^3&,3];Cow[comp_]:=Map[First,Split[
Flatten[RootReduce[Map[Function[x,x[[1]]+(x[[2]]-x[[1]]){0,-r^5,r^5+1,1}],Partition[comp,2,1,1]]]]]];
 poly2=Table[ReIm[Nest[Cow,N[RootReduce[r^({4,1,3,5}+n){1,1,-1,1}],50],3]],{n,1,30}];fracψ=Graphics[{EdgeForm[{Black}],Gray,Disk[{0,0},.1],
Map[Function[x,{ColorData["BrightBands"][N[Norm[Mean[x]]3]],Polygon[x]}],poly2],Black, Inset[Style[Row[{"ψ =",Underoverscript["∑","n=2", "∞"],Superscript["ψ","-n"]}],20],{-1/3,1/3}]}]

The infinite series for can be illustrated with an infinite set of similar fractals.

Infinite plastic fractal triangle dissection
&#10005

ρ=Root[-1-#1+#1^3&,3]; iterations=4;big=ρ^{5,8,6,9,4,7};par=ρ^{6,9,7,10,5,8};
wee=ρ^4{ρ^3,ρ^8,ρ^5,ρ^6(2ρ^2 -1),1,ρ^2 (2ρ^3 -1)};
plastic[comp_]:=Map[First,Split[Flatten[RootReduce[Map[Function[x,
{x[[1,1]]+(x[[1,2]]-x[[1,1]]) {0,ρ^5,1},x[[2,1]]+(x[[2,2]]-x[[2,1]]) {0,1-ρ^5,1}}],Partition[Partition[comp,2,1,1],2]]]]]];
poly=Table[{Hue[Pi n],Polygon[ReIm[Nest[plastic,wee ρ^(n-1),iterations]]]},{n,1,20}];Graphics[{EdgeForm[Black],poly, Inset[Style[Row[{"ρ =",Underoverscript["∑","n=4", "∞"],Superscript["ρ","-n"]}],20],{-5/12,1/3}] }, ImageSize-> 500]

Here is that grid of values again.

seriesgrid
&#10005

seriesgrid

Iterated Dissections

It turns out these “self-summing” infinite series also have unusual self-similar triangle dissections, first hinted at in Wheels of Powered Triangles.

2, φ, ψ, χ, ρ substitution tilings
&#10005

Column[dissectionDiagram[#, 530]&/@{SqrtTwo,SqrtPhi,SqrtPsi,SqrtChi,SqrtRho}]

Iterate the dissection; to reduce the chaos, triangles with the same orientation are colored the same. Here are the dissections after 18 steps.

2, φ, ψ, χ, ρ substitution tiling fractals
&#10005

Column[labeledrecursionDiagram[#, 530, 18]&/@{SqrtTwo,SqrtPhi,SqrtPsi,SqrtChi,SqrtRho}]

The following pinwheel tiling is not nearly as chaotic. Pinwheel triangles eventually have an infinite number of orientations, but the progress to chaos is slower than the ones shown previously.

Pinwheel tiling
&#10005

recursionDiagram[pinwheel, 530, 22]

Here’s a portion of the fractal after 180 steps.

Sqrt(χ) substitution tiling fractal
&#10005

pts=Drop[Append[SqrtSpace[SqrtChi[[1]], SqrtChi[[2]]], SqrtSpace[SqrtChi[[1]], {{7,13,11,9},{9,15,13,11}}/4]],{3}];
tri={{2,9,1},{4,6,3},{5,6,8},{7,6,4},{3,5,6},{8,7,6},{1,3,5},{2,8,7}};
edges=Union[Flatten[Subsets[#,{2}]&/@tri,1]];
bary=ReptileSubstitutionBarycentrics[SqrtChi];
start=GatherBy[Chop[N[pts[[#]]]]&/@tri,Area[Polygon[#]]&];
iterate=SortBy[GatherBy[RecursiveBarycentrics[180,bary, start],Round[10^6Normalize[#[[1]]-Mean[#]]]&],Length[#]&];fractchi = Graphics[{EdgeForm[Black], MapIndexed[
{RGBColor[N[(IntegerDigits[#2[[1]],4,3])/3.1]], Polygon[#]&/@#1}&,iterate]}, ImageSize-> 530]

And here is a portion of the plastic fractal after 40 steps.

Sqrt(ρ) substitution tiling fractal
&#10005

take=SqrtRho;
pts=ReplacePart[SqrtSpace[take[[1]], take[[2]]],3-> SqrtSpace[take[[1]], {{4,1,-3},{4,7,7}}/4]];;
tri=ReplacePart[take[[3]],1-> {2,3,1}];
bary=ReptileSubstitutionBarycentrics[take];
start=GatherBy[Chop[N[pts[[#]]]]&/@tri,Area[Polygon[#]]&];
iterate=SortBy[GatherBy[RecursiveBarycentrics[40,bary, start],Round[10^6Normalize[#[[1]]-Mean[#]]]&],Length[#]&];Graphics[{EdgeForm[Black], MapIndexed[
{RGBColor[N[(IntegerDigits[#2[[1]],4,3])/3.1]], Polygon[#]&/@#1}&,iterate]}, ImageSize-> 530]

By using symmetry within the dissections, it turns out there are twelve substitution tilings with distinct properties.

2, φ, ψ, χ, ρ substitution tilings
&#10005

Grid[Partition[dissectionDiagram[#, 265]&/@
{SqrtTwo,SqrtTwo2,SqrtPhi,SqrtPsi,SqrtChi,SqrtChi2,SqrtChi3,SqrtChi4,SqrtRho,SqrtRho2,SqrtRho3,SqrtRho4},UpTo[2]]]

It turns out “neat example” is really true here, leading to twelve new substitution tilings.

Mathematica 12 significantly extends the reach of Mathematica and introduces many innovations that give all Mathematica users new levels of power and effectiveness.

Buy now!

Comments

Join the discussion

!Please enter your comment (at least 5 characters).

!Please enter your name.

!Please enter a valid email address.

4 comments

  1. Your dissections with xhi seem wrong:
    xhi = 1.22074408460576
    xhi^4 = 2.22074408460576 vs xhi + 1 = 2.22074408460576
    zeta = sqrt(xhi)
    zeta^14 = 4.03991659800193 vs zeta^9 + zeta^5 = 4.10013929506199
    zeta^14 = 4.03991659800193 vs zeta^11 + zeta^1 = 4.10013929506199

    so the left subtriangle has not edge length zeta^14

    Reply
  2. The main triangle dimensions in order to be fractal is :
    a = zeta^7 + 2*zeta^5 + 2*zeta^3 + zeta
    b = zeta^6 + zeta^4 + zeta^2 + 1
    c = zeta^6 + zeta^4 + 2*zeta^2 + 1
    with
    a*zeta^0 = c*zeta^3 = b*zeta^5

    Reply
  3. Yes, that’s valid. Still a set of similar triangles, but I shouldn’t have rounded the power. I’ve decided to cut up that larger triangle.

    Reply
  4. oddity in the pinwheel diagram — shouldn’t all the sub-triangles be the same size?
    Thanks for the new tilings and thorough writeup.

    Reply