June 2, 2017 — Michael Gammon, Blog Coordinator, Document and Media Systems

We’re always excited to see new books that illustrate applications of Wolfram technology in a wide range of fields. Below is another set of recently published books using the Wolfram Language to explore computational thinking. From André Dauphiné’s outstanding geographical studies of our planet to Romano and Caveliere’s work on the geometric optics that help us study the stars, we find a variety of fields served by Wolfram technology.

Application Books Set 1

Read More »


May 23, 2017 — Jeffrey Bryant, Research Programmer, Wolfram|Alpha Scientific Content

Sun, TRAPPIST, Jupiter and Mercury with exoplanet orbit

Exoplanets are currently an active area of research in astronomy. In the past few years, the number of exoplanet discoveries has exploded, mainly as the result of the Kepler mission to survey eclipsing exoplanet systems. But Kepler isn’t the only exoplanet study mission going on. For example, the TRAnsiting Planets and PlanetesImals Small Telescope (TRAPPIST) studies its own set of targets. In fact, the media recently focused on an exoplanet system orbiting an obscure star known as TRAPPIST-1. As an introduction to exoplanet systems, we’ll explore TRAPPIST-1 and its system of exoplanets using the Wolfram Language.

Read More »


February 26, 2016 — Emily Suess, Technical Writer, Technical Communications and Strategy Group

Kip Thorne, physicist, New York Times bestselling author, and professor emeritus at Caltech, ignited fans’ passion for science through his work on the movie Interstellar. The sci-fi adventure won the 2015 Academy Award for Best Visual Effects, and the first cuts of some of those stunning visuals were created with Mathematica and the Wolfram Language.

“Mathematica was my way of testing whether or not I had the equations right,” says Thorne, whose computational approach to producing images led to publication in the American Journal of Physics and Classical and Quantum Gravity.

Gravitational lensing of the Prawn Nebula by a black hole

Read More »


February 11, 2016 — Jason Grigsby, Software Engineer, Software Engineering

Earlier today at a press conference held at the National Science Foundation headquarters in Washington, DC, it was announced that the Laser Interferometer Gravitational-Wave Observatory (LIGO) confirmed the first detection of a gravitational wave. The image reproduced below shows the signal read off from the Hanford, Washington, LIGO installation. The same signal could be seen in the data from the Livingston, Louisiana, site as well. While this signal may not seem like much, it is one of the most important scientific discoveries of our lifetime.

The gravitational wave event GW150914 observed by LIGO Hanford

B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

Read More »


April 2, 2015 — Vitaliy Kaurov, Technical Communication & Strategy

Eclipse splash graphic

You may have heard that on March 20 there was a solar eclipse. Depending on where you are geographically, a solar eclipse may or may not be visible. If it is visible, local media make a small hype of the event, telling people how and when to observe the event, what the weather conditions will be, and other relevant details. If the eclipse is not visible in your area, there is a high chance it will draw very little attention. But people on Wolfram Community come from all around the world, and all—novices and experienced users and developers—take part in these conversations. And it is a pleasure to witness how knowledge of the subject and of Wolfram technologies and data from different parts of the world are shared.

Read More »


March 2, 2015 — Jeffrey Bryant, Research Programmer, Wolfram|Alpha Scientific Content

2015 is shaping up to be an interesting year in space exploration. For the first time, we will get up-close views of a dwarf planet. In fact, two different spacecraft will visit two different dwarf planets. The Dawn spacecraft is nearing its second primary target, Ceres, later this week. Later this year, the New Horizons spacecraft will visit Pluto.

Dawn deep space probe data

Read More »


December 29, 2014 — Tom Sherlock, User Interface Group

As an amateur astronomer, I’m always interested in ways to use Mathematica in my hobby. In earlier blog posts, I’ve written about how Mathematica can be used to process and improve images taken of planets and nebulae. However, I’d like to be able to control my astronomical hardware directly with the Wolfram Language.

In particular, I’ve been curious about using the Wolfram Language as a way to drive my telescope mount, for the purpose of automating an observing session. There is precedent for this because some amateurs use their computerized telescopes to hunt down transient phenomena like supernovas. Software already exists for performing many of the tasks that astronomers engage in—locating objects, managing data, and performing image processing. However, it would be quite cool to automate all the different tasks associated with an observing session from one notebook.

Mathematica is highly useful because it can perform many of these operations in a unified manner. For example, Mathematica incorporates a vast amount of useful astronomical data, including the celestial coordinates of hundreds of thousands of stars, nebula, galaxies, asteroids, and planets. In addition to this, Mathematica‘s image processing and data handling functionality are extremely useful when processing astronomical data.

Read More »


August 14, 2014 — Tom Sherlock, User Interface Group

The planet Mars comes into opposition, the point closest to the Earth, about every 780 days, or a bit over two years. The Martian opposition this year was on April 9. This past May, on a rare clear, warm night, I attempted to capture some images of the red planet. Unfortunately once I had my telescope set up, Mars had passed behind a large tree, so the images I captured were distorted by tree branches. Nevertheless, I did manage to capture a set of frames, and hoped that image processing with Mathematica could produce something usable.

Read More »


August 7, 2014 — Jeffrey Bryant, Research Programmer, Wolfram|Alpha Scientific Content

We are reposting this blog post due to the ESA’s success yesterday, August 6, 2014.

We recently posted a blog entry celebrating the anniversary of the Apollo 11 landing on the Moon. Now, just a couple weeks later, we are preparing for another first: the European Space Agency’s attempt to orbit and then land on a comet. The Rosetta spacecraft was launched in 2004 with the ultimate goal of orbiting and landing on comet 67P/Churyumov–Gerasimenko. Since the launch, Rosetta has already flown by asteroid Steins, in 2008, and asteroid 21 Lutetia, in 2010.

NASA and the European Space Agency (ESA) have a long history of sending probes to other solar system bodies that then orbit those bodies. The bodies have usually been nice, well-behaved, and spherical, making orbital calculations a fairly standard thing. But, as Rosetta recently started to approach comet 67P, we began to get our first views of this alien world. And it is far from spherical.

Far from spherical comet 67P

Read More »


August 21, 2013 — Jeffrey Bryant, Research Programmer, Wolfram|Alpha Scientific Content

In today’s world, people often forget about the wonders of the night sky. Modern conveniences provided by civilization such as electricity and lighting result in light pollution that obscures our views. Pictures like the one below that I took near Champaign, Illinois show the yellow glow of city lights that reduces the contrast with the night sky and makes it difficult to see some of the more visually stunning, but lower contrast sights like the Milky Way. But you can still make out the Milky Way in my photo as a cloudy stripe that runs up from the southern horizon during summer in the Northern hemisphere, or winter if you are in the Southern hemisphere.

Read More »