Stephen Wolfram

Introducing Tweet-a-Program

September 18, 2014 — Stephen Wolfram

In the Wolfram Language a little code can go a long way. And to use that fact to let everyone have some fun, today we’re introducing Tweet-a-Program.

Compose a tweet-length Wolfram Language program, and tweet it to @WolframTaP. Our Twitter bot will run your program in the Wolfram Cloud and tweet back the result.

Hello World from Tweet-a-Program: GeoGraphics[Text[Style["Hello!",150]],GeoRange->"World"]

CONTINUE READING »

Posted in: Wolfram Language

Stephen Wolfram

Launching Today: Mathematica Online!

September 15, 2014 — Stephen Wolfram

It’s been many years in the making, and today I’m excited to announce the launch of Mathematica Online: a version of Mathematica that operates completely in the cloud—and is accessible just through any modern web browser.

In the past, using Mathematica has always involved first installing software on your computer. But as of today that’s no longer true. Instead, all you have to do is point a web browser at Mathematica Online, then log in, and immediately you can start to use Mathematica—with zero configuration.

Here’s what it looks like:

Click to open in Mathematica Online (you will need to log in or create a free account)

CONTINUE READING »


Crystal Fantry

Mathematica Summer Camp 2014 Comes to a Close

September 10, 2014 — Crystal Fantry, Manager, Education Content

Thirty students from six different countries came together to explore their passion for programming and mathematics for two weeks in July, and the result was extraordinary! Each and every one of these students created a significant Wolfram Language project during the camp. Their projects and interests ranged from physics and mathematics to automotive engines to poker and blackjack.

MSC 2014 group photo

CONTINUE READING »


Jon McLoone

Solving the Knight’s Tour on and off the Chess Board

September 4, 2014 — Jon McLoone, International Business & Strategic Development

I first came across the knight’s tour problem in the early ’80s when a performer on the BBC’s The Paul Daniels Magic Show demonstrated that he could find a route for a knight to visit every square on the chess board, once and only once, from a random start point chosen by the audience. Of course, the act was mostly showmanship, but it was a few years before I realized that he had simply memorized a closed (or reentrant) tour (one that ended back where he started), so whatever the audience chose, he could continue the same sequence from that point.

In college a few years later, I spent some hours trying, and failing, to find any knight’s tour, using pencil and paper in various systematic and haphazard ways. And for no particular reason, this memory came to me while I was driving to work today, along with the realization that the problem can be reduced to finding a Hamiltonian cycle—a closed path that visits every vertex—of the graph of possible knight moves. Something that is easy to do in Mathematica. Here is how.

CONTINUE READING »


Johan Rhodin

Wolfram SystemModeler in Electrical Engineering Courses

August 21, 2014 — Johan Rhodin, Kernel Developer

I’m an electrical engineer by training. In my first circuits class, all calculations were done by hand, and we could check solutions with unintuitive circuit simulators using the SPICE methodology. With SystemModeler I think it’s easier than ever to get started building virtual circuits and trying what-if scenarios for electrical circuits and systems. In this blog post, I’ll start from very basic circuits with components such as resistors and inductors and gradually add more complexity in the form of amplifiers and switching circuits.

If you want to follow along, you can download a trial of SystemModeler. It’s also available with a student license, or you can buy a home-use license.

Let’s start with the simplest electrical circuit I can think of:

Simplest electrical circuit

CONTINUE READING »

Posted in: SystemModeler

Michael Trott

Which Is Closer: Local Beer or Local Whiskey?

August 19, 2014 — Michael Trott, Chief Scientist

In today’s blog post, we will use some of the new features of the Wolfram Language, such as language processing, geometric regions, map-making capabilities, and deploying forms to analyze and visualize the distribution of beer breweries and whiskey distilleries in the US. In particular, we want to answer the core question: for which fraction of the US is the nearest brewery further away than the nearest distillery?

Disclaimer: you may read, carry out, and modify inputs in this blog post independent of your age. Hands-on taste tests might require a certain minimal legal age (check your countries’ and states’ laws).

We start by importing two images from Wikipedia to set the theme; later we will use them on maps.

CONTINUE READING »


Tom Sherlock

Fixing Bad Astrophotography II: Imaging Mars with Mathematica

August 14, 2014 — Tom Sherlock, User Interface Group

The planet Mars comes into opposition, the point closest to the Earth, about every 780 days, or a bit over two years. The Martian opposition this year was on April 9. This past May, on a rare clear, warm night, I attempted to capture some images of the red planet. Unfortunately once I had my telescope set up, Mars had passed behind a large tree, so the images I captured were distorted by tree branches. Nevertheless, I did manage to capture a set of frames, and hoped that image processing with Mathematica could produce something usable.

CONTINUE READING »


Stephen Wolfram

Computational Knowledge and the Future of Pure Mathematics

August 12, 2014 — Stephen Wolfram

Every four years for more than a century there’s been an International Congress of Mathematicians (ICM) held somewhere in the world. In 1900 it was where David Hilbert announced his famous collection of math problems—and it’s remained the top single periodic gathering for the world’s research mathematicians.

This year the ICM is in Seoul, and I’m going to it today. I went to the ICM once before—in Kyoto in 1990. Mathematica was only two years old then, and mathematicians were just getting used to it. Plenty already used it extensively—but at the ICM there were also quite a few who said, “I do pure mathematics. How can Mathematica possibly help me?”

Mathematics

CONTINUE READING »

Posted in: Mathematics

Jeffrey Bryant

Rosetta—First Mission to Orbit and Land on a Comet

August 7, 2014 — Jeffrey Bryant, Scientific Information Group

We are reposting this blog post due to the ESA’s success yesterday, August 6, 2014.

We recently posted a blog entry celebrating the anniversary of the Apollo 11 landing on the Moon. Now, just a couple weeks later, we are preparing for another first: the European Space Agency’s attempt to orbit and then land on a comet. The Rosetta spacecraft was launched in 2004 with the ultimate goal of orbiting and landing on comet 67P/Churyumov–Gerasimenko. Since the launch, Rosetta has already flown by asteroid Steins, in 2008, and asteroid 21 Lutetia, in 2010.

NASA and the European Space Agency (ESA) have a long history of sending probes to other solar system bodies that then orbit those bodies. The bodies have usually been nice, well-behaved, and spherical, making orbital calculations a fairly standard thing. But, as Rosetta recently started to approach comet 67P, we began to get our first views of this alien world. And it is far from spherical.

Far from spherical comet 67P

CONTINUE READING »


Devendra Kapadia

The ABCD of Divergent Series

August 6, 2014 — Devendra Kapadia, Mathematica Algorithm R&D

What is the sum of all the natural numbers? Intuition suggests that the answer is infinity, and, in calculus, the natural numbers provide a simple example of a divergent series. Yet mathematicians and physicists have found it useful to assign fractional, negative, or even zero values to the sums of such series. My aim in writing this post is to clear up some of the mystery that surrounds these seemingly bizarre results for divergent series. More specifically, I will use Sum and other functions in Mathematica to explain the sense in which the following statements are true.

Using Sum

The significance of the labels A, B, C, and D for these examples will soon become clear!

CONTINUE READING »

Posted in: Mathematics