RootApproximant can turn an approximate solution into a perfect solution, such as for a square divided into fifty 45°-60°-75° triangles.
A square can be divided into triangles, for example by connecting opposite corners. It's possible to divide a square into seven similar but differently sized triangles or ten
acute isosceles triangles. Classic puzzles involve cutting a square into eight acute triangles, or twenty 1 - 2 - √5 triangles. The last image uses 45°-60°-75° triangles, but one triangle has a flaw.
It's easy to divide a square with similar right triangles. Can a square be divided into similar non-right triangles? In his paper "Tilings of Polygons with Similar Triangles" (
Combinatorica, 10(3), 1990 pp. 281–306), Laczkovich proved exactly three triangles provided solutions, with angles 22.5°-45°-122.5°, 15°-45°-120°, and 45°-60°-75°. I read his paper to try to make an image for the 45°-60°-75° case, but his construction was complex, and seemed to require thousands of triangles, so I tried to find my own solutions. All my attempts had flaws, such as the last image above, so I made a
contest out of it: $200, minus a dollar for every triangle in the solution.