Wolfram Computation Meets Knowledge

Education & Academic

New in the Wolfram Language: Enhanced Derivatives

Derivatives of functions play a fundamental role in calculus and its applications. In particular, they can be used to study the geometry of curves, solve optimization problems and formulate differential equations that provide mathematical models in areas such as physics, chemistry, biology and finance. The function D computes derivatives of various types in the Wolfram Language and is one of the most-used functions in the system. My aim in writing this post is to introduce you to the exciting new features for D in Version 11.1, starting with a brief history of derivatives.
Education & Academic

Exploring Exoplanet Systems with the Wolfram Language

Exoplanets are currently an active area of research in astronomy. In the past few years, the number of exoplanet discoveries has exploded, mainly as the result of the Kepler mission to survey eclipsing exoplanet systems. But Kepler isn't the only exoplanet study mission going on. For example, the TRAnsiting Planets and PlanetesImals Small Telescope (TRAPPIST) studies its own set of targets. In fact, the media recently focused on an exoplanet system orbiting an obscure star known as TRAPPIST-1. As an introduction to exoplanet systems, we'll explore TRAPPIST-1 and its system of exoplanets using the Wolfram Language.
Announcements & Events

New Mathematics Books Utilizing Wolfram Technology

We're always excited to see how people are using our technology in fields like math and science education, so we keep an eye out for new books that give educators ideas about exploring computational thinking in their classrooms. Here are a few titles we've come across recently. These books range from highly theoretical mathematical explorations in the Wolfram Language to Mathematica labs for studying calculus.
Leading Edge

Using the Sense HAT on a Raspberry Pi with Mathematica 11

Ever since the partnership between the Raspberry Pi Foundation and Wolfram Research began, people have been excited to discover---and are often surprised by---the power and ease of using the Wolfram Language on a Raspberry Pi. The Wolfram Language's utility is expanded even more with the addition of the Sense HAT, a module that gives the Raspberry Pi access to an LED array and a collection of environmental and movement sensors. This gives users the ability to read in data from the physical world and display or manipulate it in the Wolfram Language with simple, one-line functions. With the release of Mathematica 11, I've been working hard to refine functions that connect to the Sense HAT, allowing Mathematica to communicate directly with the device.
Best of Blog

Launching the Wolfram Data Repository: Data Publishing that Really Works

After a Decade, It’s Finally Here! I’m pleased to announce that as of today, the Wolfram Data Repository is officially launched! It’s been a long road. I actually initiated the project a decade ago—but it’s only now, with all sorts of innovations in the Wolfram Language and its symbolic ways of representing data, as well […]

Products

Walking the Dog: Neural Nets, Image Identification and Geolocation

It's National Pet Day on April 11, the day we celebrate furry, feathered or otherwise nonhuman companions. To commemorate the date, we thought we'd use some new features in the Wolfram Language to map a dog walk using pictures taken with a smartphone along the way. After that, we'll use some neural net functions to identify the content in the photos. One of the great things about Wolfram Language 11.1 is pre-trained neural nets, including Inception V3 trained on ImageNet Competition data and Inception V1 trained on Places365 data, among others, making it super easy for a novice programmer to implement them. These two pre-trained neural nets make it easy to: 1) identify objects in images; and 2) tell a user what sort of landscape an image represents.