WOLFRAM

The Wolfram|Alpha Blog is now part of the Wolfram Blog. Please update your subscriptions and follow us here.
Announcements & Events

Learning to Listen: Neural Networks Application for Recognizing Speech

Introduction

Recognizing words is one of the simplest tasks a human can do, yet it has proven extremely difficult for machines to achieve similar levels of performance. Things have changed dramatically with the ubiquity of machine learning and neural networks, though: the performance achieved by modern techniques is dramatically higher compared with the results from just a few years ago. In this post, I'm excited to show a reduced but practical and educational version of the speech recognition problem---the assumption is that we’ll consider only a limited set of words. This has two main advantages: first of all, we have easy access to a dataset through the Wolfram Data Repository (the Spoken Digit Commands dataset), and, maybe most importantly, all of the classifiers/networks I’ll present can be trained in a reasonable time on a laptop.

It’s been about two years since the initial introduction of the Audio object into the Wolfram Language, and we are thrilled to see so many interesting applications of it. One of the main additions to Version 11.3 of the Wolfram Language was tight integration of Audio objects into our machine learning and neural net framework, and this will be a cornerstone in all of the examples I’ll be showing today.

Without further ado, let’s squeeze out as much information as possible from the Spoken Digit Commands dataset!

Education & Academic

Strange Circles in the Complex Plane—More Experimental Mathematics Results

The Shape of the Differences of the Complex Zeros of Three-Term Exponential Polynomials In my last blog, I looked at the distribution of the distances of the real zeros of functions of the form with incommensurate , . And after analyzing the real case, I now want to have a look at the differences of the zeros of three-term exponential polynomials of the form for real , , . (While we could rescale to set and for the zero set , keeping and will make the resulting formulas look more symmetric.) Looking at the zeros in the complex plane, one does not see any obvious pattern. But by forming differences of pairs of zeros, regularities and patterns emerge, which often give some deeper insight into a problem. We do not make any special assumptions about the incommensurability of , , . The differences of the zeros of this type of function are all located on oval-shaped curves. We will find a closed form for these ovals. Using experimental mathematics techniques, we will show that ovals are described by the solutions of the following equation: ... where:
Education & Academic

A Tale of Three Cosines—An Experimental Mathematics Adventure

Identifying Peaks in Distributions of Zeros and Extrema of Almost-Periodic Functions: Inspired by Answering a MathOverflow Question

One of the Holy Grails of mathematics is the Riemann zeta function, especially its zeros. One representation of is the infinite sum . In the last few years, the interest in partial sums of such infinite sums and their zeros has grown. A single cosine or sine function is periodic, and the distribution of its zeros is straightforward to describe. A sum of two cosine functions can be written as a product of two cosines, . Similarly, a sum of two sine functions can be written as a product of . This reduces the zero-finding of a sum of two cosines or sines to the case of a single one. A sum of three cosine or sine functions, , is already much more interesting.

Fifteen years ago, in the notes to chapter 4 of Stephen Wolfram’s A New Kind of Science, a log plot of the distribution of the zero distances... ... of the zero distribution of ---showing characteristic peaks---was shown.
Announcements & Events

Five Ways to Make Your Technical Presentations Awesome

"Tell me and I forget. Teach me and I remember. Involve me and I learn." -- Benjamin Franklin I can count on one hand the best presentations I have ever experienced, the most recent being my university dynamics lecturer bringing out his electric guitar at the end of term to demonstrate sound waves; a pharmaceutical CEO giving an impassioned after-dinner oration about how his love of music influenced his business decisions; and last but not least, my award-winning attempt at explaining quantum entanglement using a marble run and a cardboard box (I won a bottle of wine). It's perhaps equally easy to recall all the worst presentations I've experienced as well---for example, too many PowerPoint presentations crammed full of more bullet points than a shooting target; infinitesimally small text that only Superman's telescopic vision could handle; presenters intent on slowly reading every word that they've squeezed onto a screen and thoroughly missing the point of a presentation: that of succinctly communicating interesting ideas to an audience.
Announcements & Events

Announcing Wolfram Presenter Tools

Introducing the Ultimate Technical Presentation Environment with Live Interactivity

We are delighted to announce that Wolfram's latest comprehensive notebook technology extension is here. Released with Version 11.3 of Wolfram desktop products, Wolfram Presenter Tools is the world's first fully computational presentation environment, seamlessly extending the notebook workflow for easy creation and delivery of dynamic presentations and slide shows, automatically scaled to fit any screen size. Our unique presentation features include rapid stylesheet updating and automatic slide breaking based on cell style.
Education & Academic

Launching the Wolfram Challenges Site

The more one does computational thinking, the better one gets at it. And today we’re launching the Wolfram Challenges site to give everyone a source of bite-sized computational thinking challenges based on the Wolfram Language. Use them to learn. Use them to stay sharp. Use them to prove how great you are. The Challenges typically […]

Announcements & Events

Unleash Your Models with SystemModeler 5.1

Explore the contents of this article with a free Wolfram SystemModeler trial. We are excited to announce the latest installment in the Wolfram SystemModeler series, Version 5.1, where our primary focus has been on pushing the scope of use for models of systems beyond the initial stages of development.

Since 2012, SystemModeler has been used in a wide variety of fields with an even larger number of goals—such as optimizing the fuel consumption of a car, finding the optimal dosage of a drug for liver disease and maximizing the lifetime of a battery system. The Version 5.1 update expands SystemModeler beyond its previous usage horizons to include a whole host of options, such as:

Exporting models in a form that includes a full simulation engine, which makes them usable in a wide variety of tools Providing the right interface for your models so that they are easy for others to explore and analyze Sharing models with millions of users with the simulation core now included in the Wolfram Language