WOLFRAM

Wolfram Language

Announcements & Events

Free-Form Bioprinting with Mathematica and the Wolfram Language

In past blog posts, we’ve talked about the Wolfram Language’s built-in, high-level functionality for 3D printing. Today we’re excited to share an example of how some more general functionality in the language is being used to push the boundaries of this technology. Specifically, we’ll look at how computation enables 3D printing of very intricate sugar structures, which can be used to artificially create physiological channel networks like blood vessels.
Computation & Analysis

Thrust Supersonic Car Engineering Insights: Applying Multiparadigm Data Science

Having a really broad toolset and an open mind on how to approach data can lead to interesting insights that are missed when data is looked at only through the lens of statistics or machine learning. It’s something we at Wolfram Research call multiparadigm data science, which I use here for a small excursion through calculus, graph theory, signal processing, optimization and statistics to gain some interesting insights into the engineering of supersonic cars.

Computation & Analysis

Cleaning and Structuring Large Datasets: Web Scraping with the Wolfram Language, Part 2

In my previous post, I demonstrated the first step of a multiparadigm data science workflow: extracting data. Now it's time to take a closer look at how the Wolfram Language can help make sense of that data by cleaning it, sorting it and structuring it for your workflow. I'll discuss key Wolfram Language functions for making imported data easier to browse, query and compute with, as well as share some strategies for automating the process of importing and structuring data. Throughout this post, I'll refer to the US Election Atlas website, which contains tables of US presidential election results for given years:

Education & Academic

The 2018 Wolfram Summer School: A Recap

The 16th annual Wolfram Summer School was another successful immersive education adventure made possible by the power of the Wolfram Language for rapid scientific exploration and software development. A select group of 62 participants from all around the world (ranging from advanced high-school students to postgraduate students and beyond) worked on a variety of computational projects related to science, technology and innovation and educational innovation. The three-week program was packed with cutting-edge technologies, intellectual discussions, innovation in action and community building.
Computation & Analysis

Former Astronaut Creates Virtual Copilot with Wolfram Neural Nets and a Raspberry Pi

For the past two years, FOALE AEROSPACE has been on an exhilarating journey to create an innovative machine learning–based system designed to help prevent airplane crashes, using what might be the most understated machine for the task—the Raspberry Pi. The system is marketed as a DIY kit for aircraft hobbyists, but the ideas it’s based upon can be applied to larger aircraft (and even spacecraft!). FOALE AEROSPACE is the brainchild of astronaut Dr. Mike Foale and his daughter Jenna Foale. Mike is a man of many talents (pilot, astrophysicist, entrepreneur) and has spent an amazing 374 days in space! Together with Jenna (who is currently finishing her PhD in computational fluid dynamics), he was able to build a complex machine learning system at minimal cost. All their development work was done in-house, mainly using the Wolfram Language running on the desktop and a Raspberry Pi. FOALE AEROSPACE’s system, which it calls the Solar Pilot Guard (SPG), is a solar-charged probe that identifies and helps prevent loss-of-control (LOC) events during airplane flight. Using sensors to detect changes in the acceleration and air pressure, the system calculates the probability of each data point (an instance in time) to be in-family (normal flight) or out-of-family (non-normal flight/possible LOC event), and issues the pilot voice commands over a Bluetooth speaker. The system uses classical functions to interpolate the dynamic pressure changes around the airplane axes; then, through several layers of Wolfram’s automatic machine learning framework, it assesses when LOC is imminent and instructs the user on the proper countermeasures they should take.
Education & Academic

Big O and Friends: Tales of the Big, the Small and Every Scale in Between

One of the many beautiful aspects of mathematics is that often, things that look radically different are in fact the same—or at least share a common core. On their faces, algorithm analysis, function approximation and number theory seem radically different. After all, the first is about computer programs, the second is about smooth functions and the third is about whole numbers. However, they share a common toolset: asymptotic relations and the important concept of asymptotic scale.

By comparing the “important parts” of two functions—a common trick in mathematics—asymptotic analysis classifies functions based on the relative size of their absolute values near a particular point. Depending on the application, this comparison provides quantitative answers to questions such as “Which of these algorithms is fastest?” or “Is function a good approximation to function g?”. Version 11.3 of the Wolfram Language introduces six of these relations, summarized in the following table.

Education & Academic

Getting to the Point: Asymptotic Expansions in the Wolfram Language

Asymptotic expansions have played a key role in the development of fields such as aerodynamics, quantum physics and mathematical analysis, as they allow us to bridge the gap between intricate theories and practical calculations. Indeed, the leading term in such an expansion often gives more insight into the solution of a problem than a long and complicated exact solution. Version 11.3 of the Wolfram Language introduces two new functions, AsymptoticDSolveValue and AsymptoticIntegrate, which compute asymptotic expansions for differential equations and integrals, respectively. Here, I would like to give you an introduction to asymptotic expansions using these new functions.
Computation & Analysis

How Optimistic Do You Want to Be? Bayesian Neural Network Regression with Prediction Errors

Neural networks are very well known for their uses in machine learning, but can be used as well in other, more specialized topics, like regression. Many people would probably first associate regression with statistics, but let me show you the ways in which neural networks can be helpful in this field. They are especially useful if the data you're interested in doesn't follow an obvious underlying trend you can exploit, like in polynomial regression.

In a sense, you can view neural network regression as a kind of intermediary solution between true regression (where you have a fixed probabilistic model with some underlying parameters you need to find) and interpolation (where your goal is mostly to draw an eye-pleasing line between your data points). Neural networks can get you something from both worlds: the flexibility of interpolation and the ability to produce predictions with error bars like when you do regression.