WOLFRAM

History

Current Events & History

Creating an Animated Historical Map Function for the Wolfram Function Repository

Mapping an Ancient Empire

Geocomputation is an indispensable modern tool for analyzing and viewing large-scale data such as population demographics, natural features and political borders. And if you’ve read some of my other posts, you can probably tell that I like working with maps. Recently, a Wolfram Community member asked:

“How do I make an interactive map of the Byzantine Empire through the years?”

To figure out a solution, we'll tap into the Wolfram Knowledgebase for some historical entities, as well as some of the high-level geocomputation and visualizations of the Wolfram Language. Once we’ve created our brand-new function, we’ll submit it to the Wolfram Function Repository for anyone to use.

Current Events & History

Wolfram|Alpha at 10

The Wolfram|Alpha Story Today it’s 10 years since we launched Wolfram|Alpha. At some level, Wolfram|Alpha is a never-ending project. But it’s had a great first 10 years. It was a unique and surprising achievement when it first arrived, and over its first decade it’s become ever stronger and more unique. It’s found its way into […]

Current Events & History

As of Today, the Fundamental Constants of Physics (c, h, e, k, NA) Are Finally… Constant!

This morning, representatives of more than 100 countries agreed on a new definition of the base units for all weights and measures. Here’s a picture of the event that I took this morning at the Palais des Congrès in Versailles (down the street from the Château):

An important vote for the future weights and measures used in science, technology, commerce and even daily life happened here today. This morning’s agreement is the culmination of at least 230 years of wishing and labor by some of the world’s most famous scientists. The preface to the story entails Galileo and Kepler. Chapter one involves Laplace, Legendre and many other late-18th-century French scientists. Chapter two includes Arago and Gauss. Some of the main figures of chapter three (which I would call “The Rise of the Constants”) are Maxwell and Planck. And the final chapter (“Reign of the Constants”) begins today and builds on the work of contemporary Nobel laureates like Klaus von Klitzing, Bill Phillips and Brian Josephson.

I had the good fortune to witness today’s historic event in person.

Current Events & History

Revisiting the Disputed Federalist Papers: Historical Forensics with the Chaos Game Representation and AI

Between October 1787 and April 1788, a series of essays was published under the pseudonym of “Publius.” Altogether, 77 appeared in four New York City periodicals, and a collection containing these and eight more appeared in book form as The Federalist soon after. As of the twentieth century, these are known collectively as The Federalist Papers. The aim of these essays, in brief, was to explain the proposed Constitution and influence the citizens of the day in favor of ratification thereof. The authors were Alexander Hamilton, James Madison and John Jay.

On July 11, 1804, Alexander Hamilton was mortally wounded by Aaron Burr, in a duel beneath the New Jersey Palisades in Weehawken (a town better known in modern times for its tunnels to Manhattan and Alameda). Hamilton died the next day. Soon after, a list he had drafted became public, claiming authorship of more than sixty essays. James Madison publicized his claims to authorship only after his term as president had come to an end, many years after Hamilton’s death. Their lists overlapped, in that essays 49–58 and 62–63 were claimed by both men. Three essays were claimed by each to have been collaborative works, and essays 2–5 and 64 were written by Jay (intervening illness being the cause of the gap). Herein we refer to the 12 claimed by both men as “the disputed essays.”
Best of Blog

Analyzing Social Networks of Colonial Boston Revolutionaries with the Wolfram Language

As the Fourth of July approaches, many in America will celebrate 241 years since the founders of the United States of America signed the Declaration of Independence, their very own disruptive, revolutionary startup. Prior to independence, colonists would celebrate the birth of the king. However, after the Revolutionary War broke out in April of 1775, some colonists began holding mock funerals of King George III. Additionally, bonfires, celebratory cannon and musket fire and parades were common, along with public readings of the Declaration of Independence. There was also rum. Today, we often celebrate with BBQ, fireworks and a host of other festivities. As an aspiring data nerd and a sociologist, I thought I would use the Wolfram Language to explore the Declaration of Independence using some basic natural language processing. Using metadata, I'll also explore a political network of colonists with particular attention paid to Paul Revere, using built-in Wolfram Language functions and network science to uncover some hidden truths about colonial Boston and its key players leading up to the signing of the Declaration of Independence.
Best of Blog

Hidden Figures: Modern Approaches to Orbit and Reentry Calculations

The movie Hidden Figures was released in theaters recently and has been getting good reviews. It also deals with an important time in US history, touching on a number of topics, including civil rights and the Space Race. The movie details the hidden story of Katherine Johnson and her coworkers (Dorothy Vaughan and Mary Jackson) at NASA during the Mercury missions and the United States' early explorations into manned space flight. The movie focuses heavily on the dramatic civil rights struggle of African American women in NASA at the time, and these struggles are set against the number-crunching ability of Johnson and her coworkers. Computers were in their early days at this time, so Johnson and her team's ability to perform complicated navigational orbital mechanics problems without the use of a computer provided an important sanity check against the early computer results.
Current Events & History

Celebrating Gottfried Leibniz on the 300th Anniversary of His Death

Today is the 300th anniversary of the death of Gottfried Leibniz, a man whose work has had a deep influence on what we do here at Wolfram Research. He was born July 1, 1646, in Leipzig, and died November 14, 1716, in Hanover, which was, at the time, part of the Holy Roman Empire. I associate his name most strongly with my time learning calculus, which he invented in parallel with Isaac Newton. But Leibniz was a polymath, and his ideas and influence were much broader than that. He invented binary numbers, the integral sign and an early form of mechanical calculator.