Wolfram Computation Meets Knowledge

Date Archive: 2019 March

Current Events & History

Computing Exact Uncertainties—Physical Constants in the Current and in the New SI


In the so-called "new SI," the updated version of the International System of Units that will define the seven base units (second, meter, kilogram, ampere, kelvin, mole and candela) and that goes into effect May 20 of 2019, all SI units will be definitionally based on exact values of fundamental constants of physics. And as a result, all the named units of the SI (newton, volt, ohm, pascal, etc.) will ultimately be expressible through fundamental constants. (Finally, fundamental physics will be literally ruling our daily life 😁.)

Here is how things will change from the evening of Monday, May 20, to the morning of Tuesday, May 21, of this year.

Computation & Analysis

Peppa Pig, Tracking Meteorite Trajectory and Computational Linguistics: Wolfram Community Highlights

Over the past 16 weeks, Wolfram Community has gained over 1,000 new members—surpassing 21,000 members total! We’ve also seen more activity, with 800,000 pageviews and 160,000 new readers in that time period. We enjoy seeing the interesting and unique projects Wolfram Language users come up with and are excited to share some of the posts that make Wolfram Community a favorite platform for sharing, socializing and networking.
Computation & Analysis

3D Printing “Spikey” Commemorative Coins with the Wolfram Language

I approached my friend Frederick Wu and suggested that we should make a physical Wolfram Spikey Coin (not to be confused with a Wolfram Blockchain Token!) for the celebration of the 30th anniversary of Mathematica. Frederick is a long-term Mathematica user and coin collector, and together, we challenged ourselves to design our own commemorative coin for such a special event.

The iconic Spikey is a life-long companion of Mathematica, coined (no pun intended) in 1988 with the release of Version 1. Now, we’ve reached a time in which Wolfram technologies and different 3D printing processes happily marry together to make this project possible!
Education & Academic

Shattering the Plane with Twelve New Substitution Tilings Using 2, φ, ψ, χ, ρ

Similar Triangle Dissections

Version 12 of the Wolfram Language introduces solvers for geometry problems. The documentation for the new function GeometricScene has a neat example showing the following piece of code, with GeometricAssertion calling for seven similar triangles:

&#10005 o=Sequence[Opacity[.9],EdgeForm[Black]];plasticDissection=RandomInstance[GeometricScene[{a,b,c,d,e,f,g},{ a=={1,0},e=={0,0},Line[{a,e,d,c}], p0==Polygon[{a,b,c}], p1==Style[Polygon[{b,d,c}],Orange,o], p2==Style[Polygon[{d,f,e}],Yellow,o], p3==Style[Polygon[{b,f,d}],Blue,o], p4==Style[Polygon[{g,f,b}],Green,o], p5==Style[Polygon[{e,g,f}],Magenta,o], p6==Style[Polygon[{a,e,g}],Purple,o], GeometricAssertion[{p0,p1,p2,p3,p4,p5,p6},"Similar"]}],RandomSeeding->28]