WOLFRAM

Date Archive: 2013 January

Design & Visualization

Image Quality Analysis with Mathematica

With Mathematica, you can bring new ideas into focus. No one knows that better than Fritz Lebowsky. He's a senior principal engineer who does image-quality-related algorithm development for STMicroelectronics, a global manufacturer of electronics and semiconductors with advanced image processing technologies. Thanks to Mathematica's advanced programming language and computational power, Lebowsky is seeing major advancements in his image processing development work, with his latest color imaging project set to double performance while reducing cost by half. About the development, he says, "For the very first time in my research career I could combine several simple non-linear functions/dimensions to overcome some fundamental weaknesses in today's linear mathematics applied to image processing."
Education & Academic

Volumetric Rendering of Colliding Galaxies

The physics involved in simulating galaxy collisions can be extremely complex. The most accurate simulations take into account not just points representing stars, but also magnetic fields and invisible dark matter, as well as n-body interactions allowing the individual stars to interact with each other. These complex simulations are usually carried out on large-scale supercomputers over long periods of time. One of the more interesting aspects of galaxy collisions is that they can create density variations resulting in all kinds of emergent structure. Density waves can develop that lead to star formation from compressed gas clouds. A couple of years ago, I wrote a Demonstration that provides a simplified solution to galaxy collisions. This Demonstration is designed to run in real time inside a Manipulate, so the problem has been simplified by removing n-body interactions, dark matter, magnetic fields, and so on. Basically, it treats the two galaxies as large point masses with lots of massless test particles orbiting them. The test particles respond only to the two galaxy "centers." In a real galaxy collision, the chances of two stars getting close enough to each other to interact directly is very remote, so it's not too far of a stretch to ignore this effect for a first-order approximation. The more stars that are included in the simulation (by minimizing the star separation parameter), the more intricate the results (and the more computationally intense). In fact, as more stars are added, it becomes easier to see density variations where many test masses cluster together, but it still looks very discrete. Real galaxies, like the Milky Way, can have hundreds of billions of stars. Trying to carry out a point simulation with that many stars becomes a bit taxing on most home systems, and definitely exceeds the time constraints of a real-time dynamic tool like Manipulate. So how can we better visualize these density variations? I decided to try to modify my Demonstration to use one of the new features in Mathematica 9, namely volumetric rendering. This way, we can simulate the galaxy collisions with fewer numbers of points, but render the results as if there were billions of stars, resulting in a more realistic and informative visualization.
Announcements & Events

Lab and Process Automation with Mathematica in Biotech Research

From the beginning, the founders of the biotechnology startup Emerald Therapeutics wanted to develop an ideal research platform that would allow for lab and process automation during experiments as well as easy communication of their findings. Brian Frezza, Emerald's Co-founder and Co-CEO, says Mathematica's flexible programming language and interactive notebook environment made it the clear choice. The company's scientists and engineers have a shared codebase in Mathematica, which allows them to use one platform for all of the tasks in their antiviral research workflow—from developing functions to processing and storing data, designing and managing experiments, presenting findings, and directly controlling lab instruments. In this video, Frezza takes us into the company's lab to show us the advantages of having Mathematica as the company's core platform, including how it's used to automate experiments.