WOLFRAM

Education & Academic

The Physicalization of Metamathematics and Its Implications for the Foundations of Mathematics

One of the many surprising (and to me, unexpected) implications of our Physics Project is its suggestion of a very deep correspondence between the foundations of physics and mathematics. We might have imagined that physics would have certain laws, and mathematics would have certain theories, and that while they might be historically related, there wouldn’t be any fundamental formal correspondence between them.

But what our Physics Project suggests is that underneath everything we physically experience there is a single very general abstract structure—that we call the ruliad—and that our physical laws arise in an inexorable way from the particular samples we take of this structure. We can think of the ruliad as the entangled limit of all possible computations—or in effect a representation of all possible formal processes. And this then leads us to the idea that perhaps the ruliad might underlie not only physics but also mathematics—and that everything in mathematics, like everything in physics, might just be the result of sampling the ruliad.

Announcements & Events

New in 13: Symbolic & Numeric Computation

Math is big, and math is important. And for the Wolfram Language (which also means for Mathematica) we’re always pushing the frontiers of what’s computable in math.

One long-term story has to do with special functions. Back in Version 1.0 we already had 70 special functions.

Announcements & Events

New in 13: Notebook Interfaces

An important feature of Wolfram Notebooks is that they’re set up to operate both on the desktop and in the cloud. And even between versions of Wolfram Language there’s lots of continued enhancement in the way notebooks work in the cloud. But in Version 12.2 there’s been some particular streamlining of the interface for notebooks between desktop and cloud.

Education & Academic

Learning Differential Equations in 10 Hours or Fewer with the Wolfram Language

Differential equations are a cornerstone of modern mathematics. From quantum mechanics to population dynamics and stock market predictions, they play a crucial role in understanding the world around us. For this reason, courses on differential equations are core for many undergraduate degrees in the natural sciences, engineering and other fields.
Leading Edge

What Does Hollywood Have to Do with the Chicken Head?

In a relatively popular marketing device in the past decade, chickens found their way into online advertising and TV commercials, where their impressive focusing and stabilization skills were displayed. Hold them gently and then move them up, down or rotate them slightly, and their eyesight stays at a constant level.