WOLFRAM

Wolfram Language

Announcements & Events

New in 13.1: Chemical Representations and Pattern Reactions

Last year we released Version 13.0 of the Wolfram Language. Here are the updates in chemical representations and symbolic pattern reactions since then, including the latest features in 13.1.

 

Representing Amounts of Chemicals

Molecule lets one symbolically represent a molecule. Quantity lets one symbolically represent a quantity with units. In Version 13.1 we now have the new construct ChemicalInstance that’s in effect a merger of these, allowing one to represent a certain quantity of a certain chemical.
Current Events & History

Should I Eat That? Food Safety with Wolfram Language

Foodborne illness, or food poisoning, is something many of us have experienced. According to the World Health Organization, almost 1 in 10 people in the world fall ill each year after eating contaminated food. Luckily, by following recommended food safety practices, we can do our best to avoid getting sick.

September is Food Safety Education Month. To highlight the importance of food safety, we have introduced two new properties in Wolfram Language that can help users make smart choices about food storage:

Current Events & History

Cheers! A Computational Exploration of Alcoholic Beverages with the Wolfram Language

For 10 thousand years, humans have been using fermentation to produce beverages for pleasure, rituals and healing. In ancient Greece, honey was fermented to produce mead. Today, popular sources of beverage fermentation are grains, grapes, berries and rice. The science of fermentation—known as zymology (or zymurgy)—is a fascinating blend of chemistry, biology, history and geography. The Wolfram Language now brings a new dimension to the study of alcoholic beverages through an extensive dataset ready to be explored and analyzed.
Education & Academic

Splitting a Point with Mathematica and MathTensor: A Mathematica Memoir

In the past few years, there have been many significant anniversaries in the Mathematica world. This has made me think about my long personal history working with all things Mathematica. Here I present an account of how I got involved with this world, developed my part of it and continue to use it. I show what I think is a unique application that differs from the other thousands of applications in Mathematica or the Wolfram Language presented on the various Wolfram Research websites, Wolfram Community and elsewhere. Finally, I attempt to describe the physics of what I do. The beginning historical part with much name-dropping can be skipped for those who want to read only about technical or physics issues.
Education & Academic

Fractional Calculus in Wolfram Language 13.1

What is the half-derivative of x?

Fractional calculus studies the extension of derivatives and integrals to such fractional orders, along with methods of solving differential equations involving these fractional-order derivatives and integrals. This branch is becoming more and more popular in fluid dynamics, control theory, signal processing and other areas. Realizing the importance and potential of this topic, we have added support for fractional derivatives and integrals in the recent release of Version 13.1 of the Wolfram Language.
Education & Academic

Discrete-Time Systems to FIR Filter Design: Explore Signal Processing in the New MOOC from Wolfram U

Recognizing the importance of the topics and the powerful capabilities in the Wolfram Language for signal processing, we set out to develop a fully interactive course about signal and system processing to make the subject accessible to a wide audience. After sharing and reviewing the course materials, notes and experiences we’ve collected from university undergraduate-level courses over many years, this resulting Wolfram U course represents the collaborative efforts of two principal authors, Mariusz Jankowski and Leila Fuladi, and a team of knowledgeable staff. It is our great pleasure to introduce to you the new, free, interactive course Signals, Systems and Signal Processing, which we hope will help you understand and master this difficult but tremendously important and exciting subject.
Computation & Analysis

Animating Surfaces in the Wolfram Language Bringing Geometric Design to Life

Around the beginning of the first COVID-19-related lockdown in Austria, I was confronted with the problem of keeping my motivation up. From 2012–2016, my main tool for creating several Wolfram Demonstrations in 3D was Mathematica. Now, in addition to the Wolfram Language, Blender offered the possibility for physically based rendering (PBR) and high dynamic range (HDR) lighting and rendering. So I decided to go forward with 4K videos from animations done in Blender.
Best of Blog

Launching Version 13.1 of Wolfram Language & Mathematica 🙀🤠🥳

The Epic Continues…

Last week it was 34 years since the original launch of Mathematica and what’s now the Wolfram Language. And through all those years we’ve energetically continued building further and further, adding ever more capabilities, and steadily extending the domain of the computational paradigm.

In recent years we’ve established something of a rhythm, delivering the fruits of our development efforts roughly twice a year. We released Version 13.0 on December 13, 2021. And now, roughly six months later, we’re releasing Version 13.1. As usual, even though it’s a “.1” release, it’s got a lot of new (and updated) functionality, some of which we’ve worked on for many years but finally now brought to fruition.

Announcements & Events

New in 13: Geometric Computation

Two years ago we released Version 12.0 of the Wolfram Language. Here are the updates in geometric computation since then, including the latest features in 13.0. The contents of this post are compiled from Stephen Wolfram's Release Announcements for 12.1, 12.2, 12.3 and 13.0.

 

Euclidean Geometry Goes Interactive (December 2020)

One of the major advances in Version 12.0 was the introduction of a symbolic representation for Euclidean geometry: you specify a symbolic GeometricScene, giving a variety of objects and constraints, and the Wolfram Language can “solve” it, and draw a diagram of a random instance that satisfies the constraints. In Version 12.2 we’ve made this interactive, so you can move the points in the diagram around, and everything will (if possible) interactively be rearranged so as to maintain the constraints.

Here's a random instance of a simple geometric scene: