WOLFRAM

Wolfram Language

Design & Visualization

Celebrate National Coloring Book Day with Wolfram (and Four Crayons)

Happy National Coloring Book Day! When my coworkers suggested that I write a blog post celebrating this colorful occasion, I was, frankly, tickled pink by the idea. Coloring is a fun, therapeutic activity for anyone of any age who can color inside the lines—or occasionally just a little outside, if they're more like me. And as the newest member of the Wolfram Blog team, I wanted to see in what fun ways I could add a little color to the Wolfram Blog. While looking through Wolfram|Alpha's massive collection of popular curves, from Pokémon to ALF to Stephen Wolfram, I realized that all of the images built into the Wolfram Knowledgebase would be great for coloring. So, I figured, why not make my own Wolfram coloring book in Mathematica? Carpe colores! Each of the popular curves in the Knowledgebase can be accessed as an Entity in the Wolfram Language and comes with a wide variety of properties, including their parametric equations. But there's no need to plot them yourself—they also conveniently come with an "Image" property already included:
Best of Blog

Finding the Most Unhygienic Food in the UK

The UK, like many other countries, runs a food hygiene inspection system that tries to ensure that establishments with poor hygiene standards improve or are shut down. As is often the case, the data collected for operational reasons can provide a rich source of insight when viewed as a whole. Questions like "Where in the UK has the poorest food hygiene?", "What kinds of places are the most unhygienic?", and "What kinds of food are the most unhygienic?" spring to mind. I thought I would apply Mathematica and a little basic data science and provide the answers. The collected data, over half a million records, is updated daily and is openly available from an API, but this API seems to be targeted at performing individual lookups, so I found it more efficient to import the 414 files from this site instead.
Education & Academic

Wolfram Language Books around the World

The population of Wolfram Language speakers around the globe has only grown since the language's inception almost thirty years ago, and we always enjoy discovering users and authors who share their passion for Wolfram technologies in their own languages. So in this post, we are highlighting foreign-language books around the world that utilize Wolfram technologies, from a mathematical toolbox in Japanese to an introduction on bioinformatics from Germany.

Products

Comparing Apples and Oranges with the Wolfram Language

We've all heard the phrase "You can't compare apples and oranges." Well, the "impossible" can now be done within the Wolfram Language. With the help of new features and new data, you can finally compare the two fruits from the inside out. Along with a variety of interactive visualizations, the real difference between apples and oranges---or between frozen and chain pizzas, or even food-related Pokémon---is just a few lines of code away.
Products

Explore Yoga with Wolfram|Alpha

Each person enters a yoga class with their own unique goals. Some hope to stretch their legs, while others might want to strengthen their core, improve their balance, perform an advanced pose, or simply destress. As a yoga teacher, my goal is to balance my classes to accommodate everyone's needs and deliver information that will be potent and relevant for as many students as possible. However, there is so much information to explore in the field of yoga that it would be impossible to deliver it all in an hour-long class. Now it is possible for yoga enthusiasts and budding students alike to explore yoga using Wolfram|Alpha. You can now use Wolfram|Alpha to discover information about 216 yoga poses. If you want to learn about a pose, you can search by either its English or Sanskrit name and find basic instructions, along with an illustration. You can also look at the muscles that the pose stretches and strengthens, get ideas for ways to vary the pose, or learn about preparatory poses that you can use to build up toward more difficult poses. If you are recovering from an injury or ailment, you can check a list of precautions and contraindications to discover if the pose might be aggravating for your condition. You can also learn about commonly practiced sequences of yoga poses, such as the Sun Salutation.
Computation & Analysis

Wolfram Community Highlights: Animation, Chernoff Faces, Fingerprint ID, and More

Wolfram Community members continue to create amazing applications and visuals. Take a look at a few of our recent favorites. Wolfram Language animations make it easier to understand and investigate concepts and phenomena. They're also just plain fun. Among recent simple but stunning animations, you'll find "Deformations of the Cairo Tiling" and "Contours of a Singular Surface" by Clayton Shonkwiler, a mathematician and artist interested in geometric models of physical systems, and "Transit of Mercury 2016" by Sander Huisman, a postdoc in Lyon, France, researching Lagrangian turbulence.
Products

What Do Gravitational Crystals Really Look (i.e. Move) Like?

In a recent blog, Stephen Wolfram discusses the idea of what he calls "gravitational crystals." These are infinite arrays of gravitational bodies in periodic motion. Two animations of mesmerizing movements of points were given as examples of what gravitational crystals could look like, but no explicit orbit calculations were given. In this blog, I will carefully calculate explicit numerical examples of gravitational crystal movements. The "really" in the title should be interpreted as a high-precision, numerical solution to an idealized model problem. It should not be interpreted as "real world." No retardation, special or general relativistic effects, stability against perturbation, tidal effects, or so on are taken into account in the following calculations. More precisely, we will consider the simplest case of a gravitational crystal: two gravitationally interacting, rigid, periodic 2D planar arrays embedded in 3D (meaning a 1/distance2 force law) of masses that can move translationally with respect to each other (no rotations between the two lattices). Each infinite array can be considered a crystal, so we are looking at what could be called the two-crystal problem (parallel to, and at the same time in distinction to, the classical gravitational two-body problem).
Education & Academic

An Exact Value for the Planck Constant: Why Reaching It Took 100 Years

Blog communicated on behalf of Jean-Charles de Borda.

Some thoughts for World Metrology Day 2016

Please allow me to introduce myself I'm a man of precision and science I've been around for a long, long time Stole many a man's pound and toise And I was around when Louis XVI Had his moment of doubt and pain Made damn sure that metric rules Through platinum standards made forever Pleased to meet you Hope you guess my name

Introduction and about me

In case you can't guess: I am Jean-Charles de Borda, sailor, mathematician, scientist, and member of the Académie des Sciences, born on May 4, 1733, in Dax, France. Two weeks ago would have been my 283rd birthday. This is me:
Education & Academic

New Derivatives of the Bessel Functions Have Been Discovered with the Help of the Wolfram Language!

Nearly two hundred years after Friedrich Bessel introduced his eponymous functions, expressions for their derivatives with respect to parameters, valid over the double complex plane, have been found.
In this blog we will show and briefly discuss some formerly unknown derivatives of special functions (primarily Bessel and related functions), and explore the history and current status of differentiation by parameters of hypergeometric and other functions. One of the main formulas found (more details below) is a closed form for the first derivative of one of the most popular special functions, the Bessel function J: