News, Views & Insights
Mathematics
A Tale of Three Cosines—An Experimental Mathematics Adventure
One of the Holy Grails of mathematics is the Riemann zeta function, especially its zeros. One representation of is the infinite sum . In the last few years, the interest in partial sums of such infinite sums and their zeros has grown. A single cosine or sine function is periodic, and the distribution of its zeros is straightforward to describe. A sum of two cosine functions can be written as a product of two cosines, . Similarly, a sum of two sine functions can be written as a product of . This reduces the zero-finding of a sum of two cosines or sines to the case of a single one. A sum of three cosine or sine functions, , is already much more interesting.
Fifteen years ago, in the notes to chapter 4 of Stephen Wolfram’s A New Kind of Science, a log plot of the distribution of the zero distances... ... of the zero distribution of ---showing characteristic peaks---was shown.Cultivating New Solutions for the Orchard-Planting Problem
Creating Mathematical Gems in the Wolfram Language
Limits without Limits in Version 11.2
A New Level of Step-by-Step Solutions in Wolfram|Alpha
July 17, 2019 Update
The Wolfram|Alpha 2.0 app is now available! Learn more.
In our continued efforts to make it easier for students to learn and understand math and science concepts, the Wolfram|Alpha team has been hard at work this summer expanding our step-by-step solutions. Since the school year is just beginning, we're excited to announce some new features.How Laplace Would Hide a Goat: The New Science of Magic Windows
Last week, I read Michael Berry’s paper, “Laplacian Magic Windows.” Over the years, I have read many interesting papers by this longtime Mathematica user, but this one stood out for its maximizing of the product of simplicity and unexpectedness. Michael discusses what he calls the magic window. For 70+ years, we have known about holograms, and now we know about magic windows. So what exactly is a magic window? Here is a sketch of the optics of one: