## 非線形偏微分方程式への有限要素法の適用

*Mathematica 12 has powerful functionality for solving partial differential equations (PDEs) both symbolically and numerically. This article focuses on, among other things, the finite element method (FEM)–based solver for nonlinear PDEs that has been newly implemented in Version 12. After briefly reviewing basic syntax of the Wolfram Language for PDEs, including how to designate Dirichlet and Neumann boundary conditions, we will delineate how Mathematica 12 finds the solution of a given nonlinear problem with FEM. We then show some examples in physics and chemistry, such as the Gray–Scott model and the time-dependent Navier–Stokes equation. More information can be found in the Wolfram Language tutorial “Finite Element Programming,” on which most of this article is based.*

## 1. はじめに

Wolfram Research社の旗艦製品であるMathematicaは，5,000 を超える組み込み関数を有するWolfram Languageを駆動する．数理モデリング，解析の基本となる常・偏微分方程式の分野においては，これらをシンボリックに，あるいは数値的に解くための強力なソルバを搭載している．最近は有限要素法(FEM) を利用した数値的求解機能が大幅に強化され，偏微分方程式(PDE)を任意の領域上で解いたり，固有値・固有関数を求めたりすることが可能となった．ここでは，最新のバージョン12における非線形偏微分方程式のFEMによる求解を中心に，現実的な問題に応用する上での流れを例とともに紹介する．なお，有限要素法を用いて非線形PDEを解くワークフローの詳細，コードはすべて公開されている．MathematicaのWolframドキュメント内で，チュートリアル“FiniteElementProgramming”を参照いただきたい．