WOLFRAM

Mathematics

Education & Academic

Fractional Calculus in Wolfram Language 13.1

What is the half-derivative of x?

Fractional calculus studies the extension of derivatives and integrals to such fractional orders, along with methods of solving differential equations involving these fractional-order derivatives and integrals. This branch is becoming more and more popular in fluid dynamics, control theory, signal processing and other areas. Realizing the importance and potential of this topic, we have added support for fractional derivatives and integrals in the recent release of Version 13.1 of the Wolfram Language.
Education & Academic

New in 13: Cryptography, Blockchains & NFTs

Two years ago we released Version 12.0 of the Wolfram Language. Here are the updates in cryptography, blockchains and NFTs since then, including the latest features in 13.0. The contents of this post are compiled from Stephen Wolfram's Release Announcements for 12.1, 12.2, 12.3 and 13.0.

 

Cryptography & Security (December 2020)

One of the things we want to do with Wolfram Language is to make it as easy as possible to connect with pretty much any external system. And in modern times an important part of that is being able to conveniently handle cryptographic protocols. And ever since we started introducing cryptography directly into the Wolfram Language five years ago, I’ve been surprised at just how much the symbolic character of the Wolfram Language has allowed us to clarify and streamline things to do with cryptography.
Education & Academic

The Physicalization of Metamathematics and Its Implications for the Foundations of Mathematics

One of the many surprising (and to me, unexpected) implications of our Physics Project is its suggestion of a very deep correspondence between the foundations of physics and mathematics. We might have imagined that physics would have certain laws, and mathematics would have certain theories, and that while they might be historically related, there wouldn’t be any fundamental formal correspondence between them.

But what our Physics Project suggests is that underneath everything we physically experience there is a single very general abstract structure—that we call the ruliad—and that our physical laws arise in an inexorable way from the particular samples we take of this structure. We can think of the ruliad as the entangled limit of all possible computations—or in effect a representation of all possible formal processes. And this then leads us to the idea that perhaps the ruliad might underlie not only physics but also mathematics—and that everything in mathematics, like everything in physics, might just be the result of sampling the ruliad.

Education & Academic

Learning Differential Equations in 10 Hours or Fewer with the Wolfram Language

Differential equations are a cornerstone of modern mathematics. From quantum mechanics to population dynamics and stock market predictions, they play a crucial role in understanding the world around us. For this reason, courses on differential equations are core for many undergraduate degrees in the natural sciences, engineering and other fields.
Current Events & History

The Singular Euler–Maclaurin Expansion A New Twist to a Centuries-Old Problem

Of all mathematical operations, addition is the most basic: It’s what we learn first in school. Historically, it is the most ancient. While the simple task of getting the sum of two numbers is simple, sums of many numbers can easily turn into a challenging numerical problem if the number of summands is very large.

Current Events & History

Is Your Function Continuous? Squaring Away the New Function Properties in the Wolfram Language

[Wolfram_Notebook_Download]

The Wolfram Language has several hundred built-in functions, ranging from sine to Heun. As a user, you can extend this collection in infinitely many ways by applying arithmetic operations and function composition. This could lead you to defining expressions of bewildering complexity, such as the following:

&#10005 f = SinhIntegral[ LogisticSigmoid[ ScorerHi[Tanh[AiryAi[HermiteH[-(1/2), x] - x + 1]]]]];
You may then ask, “Is continuous?” or “Can be written as a composition of an increasing function with another function?” The powerful new tools for studying function properties in Version 12.2 provide quick answers to such questions—opening the doors for applying a network of theorems and ideas that have been developed by mathematicians during the last few centuries.
Education & Academic

3D-Printed Jewelry Made with the Wolfram Language Showcases the Beauty of Mathematics

I enjoy turning mathematical concepts into wearable pieces of art. That’s the idea behind my business, Hanusa Design. I make unique products that feature striking designs inspired by the beauty and precision of mathematics. These pieces are created using the range of functionality in the Wolfram Language. Just in time for Valentine’s Day, we recently launched Spikey earrings in the Wolfram Store, which are available in rose gold–plated brass and red nylon. In this blog, I’ll give a look under the hood and discuss how an idea becomes a product through the Wolfram Language.

Education & Academic

Step-by-Step Math Tools in Wolfram|Alpha Help Your Chemistry Course Prep

Math is one of the main things that deters students from wanting to learn more about chemistry. Being a chemical engineering student, I understand this, especially for students who just have to get chemistry out of the way as a general education requirement. Essentially, step-by-step solutions are like your own on-demand math tutor: in addition to calculating the answer, Wolfram|Alpha shows you how it got there. Here are six important math skills that you will definitely use on a regular basis in your chemistry class and how they relate to different chemistry concepts.

Education & Academic

How We Navigated a Hybrid Remote Learning Environment Using Wolfram Technology

The past year of learning ushered in a variety of new experiences for instructors and students alike, and the United States Military Academy at West Point was no exception. In addition to masks in the classroom, reduced class sizes to allow for social distancing, rigorous testing and tracing efforts, and precautionary remote video classes, we have also needed to adjust aspects of our teaching styles. While such adjustments were voluntary, to enhance the discussion I chose to teach several lessons outside under large white tents and even in stadium bleachers to safely enable larger conversations with my cadets. Sometimes this meant carrying a large whiteboard with a tripod out to the stadium. At other times it meant putting quiz-style questions on a website so that students could submit answers via forms that were easier to grade while allowing everyone to work at a safe distance on individual devices.