One of the many surprising (and to me, unexpected) implications of our Physics Project is its suggestion of a very deep correspondence between the foundations of physics and mathematics. We might have imagined that physics would have certain laws, and mathematics would have certain theories, and that while they might be historically related, there wouldn’t be any fundamental formal correspondence between them.
But what our Physics Project suggests is that underneath everything we physically experience there is a single very general abstract structure—that we call the ruliad—and that our physical laws arise in an inexorable way from the particular samples we take of this structure. We can think of the ruliad as the entangled limit of all possible computations—or in effect a representation of all possible formal processes. And this then leads us to the idea that perhaps the ruliad might underlie not only physics but also mathematics—and that everything in mathematics, like everything in physics, might just be the result of sampling the ruliad.