WOLFRAM

Date Archive: 2018 June

Computation & Analysis

The Shape of the Vote: Exploring Congressional Districts with Computation

In the past few decades, the process of redistricting has moved squarely into the computational realm, and with it the political practice of gerrymandering. But how can one solve the problem of equal representation mathematically? And what can be done to test the fairness of districts? In this post I’ll take a deeper dive with the Wolfram Language—using data exploration with Import and Association, built-in knowledge through the Entity framework and various GeoGraphics visualizations to better understand how redistricting works, where issues can arise and how to identify the effects of gerrymandering.

Announcements & Events

Launching the Wolfram Neural Net Repository

Today, we are excited to announce the official launch of the Wolfram Neural Net Repository! A huge amount of work has gone into training or converting around 70 neural net models that now live in the repository, and can be accessed programmatically in the Wolfram Language via NetModel:
✕ net = NetModel["ResNet-101 Trained on ImageNet Competition Data"]
✕ net[]
Neural nets have generated a lot of interest recently, and rightly so: they form the basis for state-of-the-art solutions to a dizzying array of problems, from speech recognition to machine translation, from autonomous driving to playing Go. Fortunately, the Wolfram Language now has a state-of-the-art neural net framework (and a growing tutorial collection). This has made possible a whole new set of Wolfram Language functions, such as FindTextualAnswer, ImageIdentify, ImageRestyle and FacialFeatures. And deep learning will no doubt play an important role in our continuing mission to make human knowledge computable.