July 5, 2018 — Jon McLoone, Director, Technical Communication & Strategy

The standard Raspbian software on the Raspberry Pi comes with a basic implementation of Minecraft and a full implementation of the Wolfram Language. Combining the two provides a fun playground for learning coding. If you are a gamer, you can use the richness of the Wolfram Language to programmatically generate all kinds of interesting structures in the game world, or to add new capabilities to the game. If you are a coder, then you can consider Minecraft just as a fun 3D rendering engine for the output of your code.

Minecraft

Read More »


June 26, 2018 — Brian Wood, Lead Technical Marketing Writer, Technical Communications and Strategy Group

In the past few decades, the process of redistricting has moved squarely into the computational realm, and with it the political practice of gerrymandering. But how can one solve the problem of equal representation mathematically? And what can be done to test the fairness of districts? In this post I’ll take a deeper dive with the Wolfram Language—using data exploration with Import and Association, built-in knowledge through the Entity framework and various GeoGraphics visualizations to better understand how redistricting works, where issues can arise and how to identify the effects of gerrymandering.

Read More »


May 31, 2018 — Sjoerd Smit, Technical Consultant

Neural networks are very well known for their uses in machine learning, but can be used as well in other, more specialized topics, like regression. Many people would probably first associate regression with statistics, but let me show you the ways in which neural networks can be helpful in this field. They are especially useful if the data you’re interested in doesn’t follow an obvious underlying trend you can exploit, like in polynomial regression.

In a sense, you can view neural network regression as a kind of intermediary solution between true regression (where you have a fixed probabilistic model with some underlying parameters you need to find) and interpolation (where your goal is mostly to draw an eye-pleasing line between your data points). Neural networks can get you something from both worlds: the flexibility of interpolation and the ability to produce predictions with error bars like when you do regression.

Bayesian Neural Nets

Read More »


March 14, 2018 — Swede White, Media & Communications Specialist

Daniel George is a graduate student at the University of Illinois at Urbana-Champaign, Wolfram Summer School alum and Wolfram intern whose award-winning research on deep learning for gravitational wave detection recently landed in the prestigious pages of Physics Letters B in a special issue commemorating the Nobel Prize in 2017.

We sat down with Daniel to learn more about his research and how the Wolfram Language plays a part in it.

DanielGeorgeAward

Read More »


January 26, 2018 — Christopher Carlson, Senior User Interface Developer, User Interfaces

Every summer, 200-some artists, mathematicians and technologists gather at the Bridges conference to celebrate connections between mathematics and the arts. It’s five exuberant days of sharing, exploring, puzzling, building, playing and discussing diverse artistic domains, from poetry to sculpture.

Bridges conference

The Wolfram Language is essential to many Bridges attendees’ work. It’s used to explore ideas, puzzle out technical details, design prototypes and produce output that controls production machines. It’s applied to sculpture, graphics, origami, painting, weaving, quilting—even baking.

In the many years I’ve attended the Bridges conferences, I’ve enjoyed hearing about these diverse applications of the Wolfram Language in the arts. Here is a selection of Bridges artists’ work.

Read More »


June 2, 2017 — Michael Gammon, Blog Administrator, Document and Media Systems

We’re always excited to see new books that illustrate applications of Wolfram technology in a wide range of fields. Below is another set of recently published books using the Wolfram Language to explore computational thinking. From André Dauphiné’s outstanding geographical studies of our planet to Romano and Caveliere’s work on the geometric optics that help us study the stars, we find a variety of fields served by Wolfram technology.

Application Books Set 1

Read More »


March 10, 2017 — Jeffrey Bryant, Research Programmer, Wolfram|Alpha Scientific Content

Brain image

In Mathematica 10, we introduced support for anatomical structures in EntityValue, which included, among many other things, a “Graphics3D” property that returns a 3D model of the anatomical structure in question. We also styled the models and aligned them with the concepts in the Unified Medical Language System (UMLS).

Read More »


March 2, 2017 — Håkan Wettergren, Applications Engineer, SystemModeler (MathCore)

Until now, it has been difficult for the average engineer to perform simple vibration analysis. The initial cost for simple equipment, including software, may be several thousand dollars—and it is not unusual for advanced equipment and software to cost ten times as much. Normally, a vibration specialist starts an investigation with a hammer impact test. An accelerometer is mounted on a structure, and a special impact hammer is used to excite the structure at several locations in the simplest and most common form of hammer impact testing. The accelerometer and hammer-force signals are recorded. Modal analysis is then used to get a preliminary understanding of the behavior of the system. The minimum equipment requirements for such a test are an accelerometer, an impact hammer, amplifiers, a signal recorder and analysis software.

I’ve figured out how to use the Wolfram Language on my smartphone to sample and analyze machine vibration and noise, and to perform surprisingly good vibration analysis. I’ll show you how, and give you some simple Wolfram Language code to get you started.

Read More »


January 13, 2017 — Nick Lariviere, Kernel Developer, Core Mathematica Engineering

This post originally appeared on Wolfram Community, where the conversation about reliable cars continues. Be sure to check out that conversation and more—we can’t wait to see what you come up with!

For the past couple of years, I’ve been playing with, collecting and analyzing data from used car auctions in my free time with an automotive journalist named Steve Lang to try and get an idea of what the used car market looks like in terms of long-term vehicle reliability. I figured it was about time that I showed off some of the ways that the Wolfram Language has allowed us to parse through information on over one million vehicles (and counting).

Vehicle Class Quality Index Rating

Read More »


December 16, 2016 — Robert Cook, Senior Consultant, Wolfram Technical Services

The UK’s National Health Service (NHS) is in crisis. With a current budget of just over £100 billion, the NHS predicts a £30 billion funding gap by 2020 or 2021 unless there is radical action. A key part of this is addressing how the NHS can predict and prevent harm well in advance and deliver a “digital healthcare transformation” to their frontline services, utilizing vast quantities of data to make informed and insightful decisions.

This is where Wolfram comes in. Our UK-based Technical Services Team worked with the British NHS to help solve a specific problem facing the NHS—one many organizations will recognize: data sitting in siloed databases, with limited analysis algorithms on offer. They wanted to see if it was possible to pull together multiple data sources, combining off-the-shelf clinical databases with the hospital trusts’ bespoke offerings and mine them for signals. We set out to help them answer questions like “Can the number of slips, trips and falls in hospitals be reduced?”

Read More »