June 20, 2013 — Wolfram Blog Team

Have an interest in mathematics or science? Wolfram technologies like Mathematica and the Computable Document Format (CDF) are bringing us to the next level of educational experience through top-notch publishing environments and interactive course content from premier math and science leaders.

Read More »


June 6, 2013 — Stephen Wolfram

 

In a few weeks it’ll be 25 years ago: June 23, 1988—the day Mathematica was launched.

Late the night before we were still duplicating floppy disks and stuffing product boxes. But at noon on June 23 there I was at a conference center in Santa Clara starting up Mathematica in public for the first time:

Mathematica v1.0 on Macintosh

(Yes, that was the original startup screen, and yes, Mathematica 1.0 ran on Macs and various Unix workstation computers; PCs weren’t yet powerful enough.)

People were pretty excited to see what Mathematica could do. And there were pretty nice speeches about the promise of Mathematica from a spectrum of computer industry leaders, including Steve Jobs (then at NeXT), who was kind enough to come even though he hadn’t appeared in public for a while. And someone at the event had the foresight to get all the speakers to sign a copy of the book, which had just gone on sale that day at bookstores all over the country:

Signatures of speakers at release of Mathematica v1.0

So much has happened with Mathematica in the quarter century since then. What began with Mathematica 1.0 has turned into the vast system that is Mathematica today. And as I look at the 25th Anniversary Scrapbook, it makes me proud to see how many contributions Mathematica has made to invention, discovery and education:

The Mathematica Story: A Scrapbook

But to me what’s perhaps most satisfying is how the fundamental principles on which I built Mathematica have stood the test of time. And how the core ideas and language that were in Mathematica 1.0 persist today (and yes, most Mathematica 1.0 code will still run unchanged today).

Read More »


May 22, 2013 — Jon McLoone, International Business & Strategic Development

The benefits of linking from Mathematica to other languages and tools differ from case to case. But unusually, in the case of the new RLink in Mathematica 9, I think the benefits have very little to do with R, the language. The real benefit, I believe, is in the connection it makes to the R community.

When we first added the MathLink libraries for C, there were real benefits in farming out intensive numerical work (though Mathematica performance improvements over the years and development of the compiler have greatly reduced the occasions where that would be worth the effort). Creating an Excel link added an alternative interface paradigm to Mathematica that wasn’t available in the Mathematica front end. But in the case of R, it isn’t immediately obvious that it does many things that you can’t already do in Mathematica or many that it does significantly better.

However, with RLink I now have immediate access to the work of the R community through the add-on libraries that they have created to extend R into their field. A great zoo of these free libraries fill out thousands of niches–sometimes popular, sometimes obscure–but lots of them. There are over 4,000 right here and more elsewhere. At a stroke, all of them are made immediately available to the Mathematica environment, interpreted through the R language runtime.

Read More »


January 3, 2013 — Wolfram Blog Team

From the beginning, the founders of the biotechnology startup Emerald Therapeutics wanted to develop an ideal research platform that would allow for lab and process automation during experiments as well as easy communication of their findings. Brian Frezza, Emerald’s Co-founder and Co-CEO, says Mathematica‘s flexible programming language and interactive notebook environment made it the clear choice.

The company’s scientists and engineers have a shared codebase in Mathematica, which allows them to use one platform for all of the tasks in their antiviral research workflow—from developing functions to processing and storing data, designing and managing experiments, presenting findings, and directly controlling lab instruments.

In this video, Frezza takes us into the company’s lab to show us the advantages of having Mathematica as the company’s core platform, including how it’s used to automate experiments.

Read More »


December 6, 2012 — Stephen Wolfram

There aren’t very many qualitatively different types of computer interfaces in use in the world today. But with the release of Mathematica 9 I think we have the first truly practical example of a new kind—the computed predictive interface.

If one’s dealing with a system that has a small fixed set of possible actions or inputs, one can typically build an interface out of elements like menus or forms. But if one has a more open-ended system, one typically has to define some kind of language. Usually this will be basically textual (as it is for the most part for Mathematica); sometimes it may be visual (as for Wolfram SystemModeler).

The challenge is then to make the language broad and powerful, while keeping it as easy as possible for humans to write and understand. And as a committed computer language designer for the past 30+ years, I have devoted an immense amount of effort to this.

But with Wolfram|Alpha I had a different idea. Don’t try to define the best possible artificial computer language, that humans then have to learn. Instead, use natural language, just like humans do among themselves, and then have the computer do its best to understand this. At first, it was not at all clear that such an approach was going to work. But one of the big things we’ve learned from Wolfram|Alpha is with enough effort (and enough built-in knowledge), it can. And indeed two years ago in Mathematica 8 we used what we’d done with Wolfram|Alpha to add to Mathematica the capability of taking free-form natural language input, and automatically generating from it precise Mathematica language code.

But let’s say one’s just got some output from Mathematica. What should one do next? One may know the appropriate Mathematica language input to give. Or at least one may be able to express what one wants to do in free-form natural language. But in both cases there’s a kind of creative act required: starting from nothing one has figure out what to say.

So can we make this easier? The answer, I think, is yes. And that’s what we’ve now done with the Predictive Interface in Mathematica 9.

The concept of the Predictive Interface is to take what you’ve done so far, and from it predict a few possibilities for what you’re likely to want to do next.

Predictive interface

Read More »


December 5, 2012 — Wolfram Blog Team

New in Mathematica 9Curious about Mathematica 9? You can see it in action in three free online events. Our experts will introduce you to new features in usability, computation, data manipulation, and visualization. Live Q&A sessions during each event will give you a chance to ask questions.

Topics covered:

Read More »


November 28, 2012 — Stephen Wolfram

I’m excited to be able to announce that today we’re releasing Mathematica 9—and it’s big! A whole array of new ideas and new application areas… and major advances along a great many algorithmic frontiers.

Next year Mathematica will be 25 years old (and all sorts of festivities are planned!). And in that quarter century we’ve just been building and building. The core principles that we began with have been validated over and over again. And with them we’ve created a larger and larger stack of technology, that allows us to do more and more, and reach further and further.

From the beginning, our goal has been an ambitious one: to cover and automate every area of computational and algorithmic work. Having built the foundations of the Mathematica language, we started a quarter century ago attacking core areas of mathematics. And over the years since then, we have been expanding outward at an ever-increasing pace, conquering one area after another.

As with Wolfram|Alpha, we’ll never be finished. But as the years go by, the scope of what we’ve done becomes more and more immense. And with Mathematica 9 today we are taking yet another huge step.

New in Mathematica 9

So what’s new in Mathematica 9? Lots and lots of important things. An amazing range—something for almost everyone. And actually just the very size of it already represents an important challenge. Because as Mathematica grows bigger and bigger, it becomes more and more difficult for one to grasp everything that’s in it.

Read More »


November 14, 2012 — Jon McLoone, International Business & Strategic Development

Update: See our latest post on How the Wolfram Language Measures Up.

I stumbled upon a nice project called Rosetta Code. Their stated aim is “to present solutions to the same task in as many different languages as possible, to demonstrate how languages are similar and different, and to aid a person with a grounding in one approach to a problem in learning another.”

After amusing myself by contributing a few solutions (Flood filling, Mean angle, and Sum digits of an integer being some of mine), I realized that the data hidden in the site provided an opportunity to quantify a claim that I have often made over the years—that Mathematica code tends to be shorter than equivalent code in other languages. This is due to both its high-level nature and built-in computational knowledge.

Here is what I found.

Large tasks - Line count ratio

Mathematica code is typically less than a third of the length of the same tasks written in other languages, and often much better.

Read More »


November 1, 2012 — Wolfram Blog Team

For Daniel Zicha, head of Light Microscopy at Cancer Research UK, Mathematica is the ultimate tool for biomedical research because it’s “quick to develop and then quick to test and visualize the results conveniently and interactively.”

Zicha uses Mathematica in the development of light microscopy techniques as well as in collaborative research in applications of image processing and analysis methods.

Within his collaborative research work in the area of metastasis, Zicha’s use of Mathematica to visualize and qualitatively analyze cell morphology led to the discovery of a novel metastasis suppressor. In this video, he describes Mathematica‘s role in the project and the advantages of having one environment for rapid prototyping, qualitative analysis, and interactive visualization.

Read More »


August 10, 2012 — Wolfram Blog Team

At the last two annual Wolfram Technology Conferences, attendees have enjoyed amazing, and being amazed by, each other in the One-Liner Competition, which challenges participants to show us the most astounding things they can do with 140 characters or less of Mathematica code. And each time we have been surprised, inspired, and gratified by their creativity.

Gravity/Repulsion

Now we’ve opened up the competition to you, and Mathematica users from around the world are sending us their submissions. In a Mathematica Experts Live broadcast on August 21, we’ll reveal the winner and runners-up of the competition, show you what they did, and explain how they did it. You’ll see applications you probably never thought possible, learn new Mathematica tricks and techniques, and have your socks blown off by elegant programming wizardry.

Read More »