## Wolfram Language Artificial Intelligence: The Image Identification Project

May 13, 2015 — Stephen Wolfram

“What is this a picture of?” Humans can usually answer such questions instantly, but in the past it’s always seemed out of reach for computers to do this. For nearly 40 years I’ve been sure computers would eventually get there—but I’ve wondered when.

I’ve built systems that give computers all sorts of intelligence, much of it far beyond the human level. And for a long time we’ve been integrating all that intelligence into the Wolfram Language.

Now I’m excited to be able to say that we’ve reached a milestone: there’s finally a function called ImageIdentify built into the Wolfram Language that lets you ask, “What is this a picture of?”—and get an answer.

And today we’re launching the Wolfram Language Image Identification Project on the web to let anyone easily take any picture (drag it from a web page, snap it on your phone, or load it from a file) and see what ImageIdentify thinks it is:

## Serial Interface Control of Astronomical Telescopes

December 29, 2014 — Tom Sherlock, User Interface Group

As an amateur astronomer, I’m always interested in ways to use Mathematica in my hobby. In earlier blog posts, I’ve written about how Mathematica can be used to process and improve images taken of planets and nebulae. However, I’d like to be able to control my astronomical hardware directly with the Wolfram Language.

In particular, I’ve been curious about using the Wolfram Language as a way to drive my telescope mount, for the purpose of automating an observing session. There is precedent for this because some amateurs use their computerized telescopes to hunt down transient phenomena like supernovas. Software already exists for performing many of the tasks that astronomers engage in—locating objects, managing data, and performing image processing. However, it would be quite cool to automate all the different tasks associated with an observing session from one notebook.

Mathematica is highly useful because it can perform many of these operations in a unified manner. For example, Mathematica incorporates a vast amount of useful astronomical data, including the celestial coordinates of hundreds of thousands of stars, nebula, galaxies, asteroids, and planets. In addition to this, Mathematica‘s image processing and data handling functionality are extremely useful when processing astronomical data.

## Extending Van Gogh’s Starry Night with Inpainting

December 1, 2014 — Piotr Wendykier, Mathematica Algorithm R&D

Can computers learn to paint like Van Gogh? To some extent—definitely yes! For that, akin to human imitation artists, an algorithm should first be fed the original artists’ creations, and then it will be able to generate a machine take on them. How well? Please judge for yourself.

Recently the Department of Engineering at the University of Cambridge announced the winners of the annual photography competition, “The Art of Engineering: Images from the Frontiers of Technology.” The second prize went to Yarin Gal, a PhD student in the Machine Learning group, for his extrapolation of Van Gogh’s painting Starry Night, shown above. Readers can view this and similar computer-extended images at Gal’s website Extrapolated Art. An inpainting algorithm called PatchMatch was used to create the machine art, and in this post I will show how one can obtain similar effects using the Wolfram Language.

## Removing Haze from a Color Photo Image Using the Near Infrared with the Wolfram Language

November 21, 2014
Matthias Odisio, Mathematica Algorithm R&D
Giulio Alessandrini, Mathematica Algorithm R&D

For most of us, taking bad pictures is incredibly easy. Band-Aid or remedy, digital post-processing can involve altering the photographed scene itself. Say you’re trekking through the mountains taking photos of the horizon, or you’re walking down the street and catch a beautiful perspective of the city, or it’s finally the right time to put the new, expensive phone camera to good use and capture the magic of this riverside… Just why do all the pictures look so bad? They’re all foggy! It’s not that you’re a bad photographer—OK, maybe you are—but that you’ve stumbled on a characteristic problem in outdoor photography: haze.

What is haze? Technically, haze is scattered light, photons bumped around by the molecules in the air and deprived of their original color, which they got by bouncing off the objects you are trying to see. The problem gets worse with distance: the more the light has to travel, the more it gets scattered around, and the more the scene takes that foggy appearance.

What can we do? What can possibly help our poor photographer? Science, of course.

Wolfram recently attended and sponsored the 2014 IEEE International Conference on Image Processing (ICIP), which ended October 30 in Paris. It was a good occasion to review the previous years’ best papers at the conference, and we noticed an interesting take on the haze problem proposed by Chen Feng, Shaojie Zhuo, Xiaopeng Zhang, Liang Shen, and Sabine Süsstrunk [1]. Let’s give their method a try and implement their “dehazing” algorithm.

The core idea behind the paper is to leverage the different susceptibilities of the light being scattered, which depend on the wavelength of the light. Light with a larger wavelength, such as red light, is more likely to travel around the dust, the smog, and all the other particles present in the air than shorter wavelength colors, like green or blue. Therefore, the red channel in an image carries better information about the non-hazy content of the scene.

But what if we could go even further? What prevents us from using the part of the spectrum slightly beyond the visible light? Nothing really—save for the fact we need an infrared camera.

Provided we are well equipped, we can then use the four channels of data (near infrared, red, green, and blue) to estimate the haze color and distribution and proceed to remove it from our image.

## Solving the Knight’s Tour on and off the Chess Board

September 4, 2014 — Jon McLoone, Director, Technical Communication & Strategy

I first came across the knight’s tour problem in the early ’80s when a performer on the BBC’s The Paul Daniels Magic Show demonstrated that he could find a route for a knight to visit every square on the chess board, once and only once, from a random start point chosen by the audience. Of course, the act was mostly showmanship, but it was a few years before I realized that he had simply memorized a closed (or reentrant) tour (one that ended back where he started), so whatever the audience chose, he could continue the same sequence from that point.

In college a few years later, I spent some hours trying, and failing, to find any knight’s tour, using pencil and paper in various systematic and haphazard ways. And for no particular reason, this memory came to me while I was driving to work today, along with the realization that the problem can be reduced to finding a Hamiltonian cycle—a closed path that visits every vertex—of the graph of possible knight moves. Something that is easy to do in Mathematica. Here is how.

## Fixing Bad Astrophotography II: Imaging Mars with Mathematica

August 14, 2014 — Tom Sherlock, User Interface Group

The planet Mars comes into opposition, the point closest to the Earth, about every 780 days, or a bit over two years. The Martian opposition this year was on April 9. This past May, on a rare clear, warm night, I attempted to capture some images of the red planet. Unfortunately once I had my telescope set up, Mars had passed behind a large tree, so the images I captured were distorted by tree branches. Nevertheless, I did manage to capture a set of frames, and hoped that image processing with Mathematica could produce something usable.

## SlideOScope and Wolfram Language Magically Transform Your Photos and Art

May 30, 2014 — Wolfram Blog Team

Donald Barnhart is a self-proclaimed mad optical scientist and independent business owner. He’s been developing optical design and analysis software in Mathematica since 1991, he’s the creator of the popular Optica software package, and he’s the developer of the first successful high-resolution holographic instrument that measures three-dimensional velocity fields in fluids.

Now Barnhart has another invention to add to his list of accomplishments: a totally new kind of photo album called the SlideOScope.

## Even More Formulas… for Everything—From Filled Algebraic Curves to the Twitter Bird, the American Flag, Chocolate Easter Bunnies, and the Superman Solid

August 15, 2013 — Michael Trott, Chief Scientist

This blog post is the continuation of my last two posts (1, 2) about formulas for curves. So far, we have discussed how to make plane curves that are sketches of animals, faces, fictional characters, and more. In this post, we will discuss the constructions of some filled curves (laminae).

## Using Formulas… for Everything—From a Complex Analysis Class to Political Cartoons to Music Album Covers

July 19, 2013 — Michael Trott, Chief Scientist

In my last blog post, I discussed how to construct closed-form trigonometric formulas for sketches of people’s faces. Using similar techniques, Wolfram|Alpha has recently added a collection of hundreds of such closed-form curves for faces, shapes, animals, logos, and signatures.