October 11, 2018 — Daniel Lichtblau, Symbolic Algorithms Developer, Algorithms R&D

Hero

Between October 1787 and April 1788, a series of essays was published under the pseudonym of “Publius.” Altogether, 77 appeared in four New York City periodicals, and a collection containing these and eight more appeared in book form as The Federalist soon after. As of the twentieth century, these are known collectively as The Federalist Papers. The aim of these essays, in brief, was to explain the proposed Constitution and influence the citizens of the day in favor of ratification thereof. The authors were Alexander Hamilton, James Madison and John Jay.

On July 11, 1804, Alexander Hamilton was mortally wounded by Aaron Burr, in a duel beneath the New Jersey Palisades in Weehawken (a town better known in modern times for its tunnels to Manhattan and Alameda). Hamilton died the next day. Soon after, a list he had drafted became public, claiming authorship of more than sixty essays. James Madison publicized his claims to authorship only after his term as president had come to an end, many years after Hamilton’s death. Their lists overlapped, in that essays 49–58 and 62–63 were claimed by both men. Three essays were claimed by each to have been collaborative works, and essays 2–5 and 64 were written by Jay (intervening illness being the cause of the gap). Herein we refer to the 12 claimed by both men as “the disputed essays.”

Read More »


September 11, 2018 — Jon McLoone, Director, Technical Communication & Strategy

Having a really broad toolset and an open mind on how to approach data can lead to interesting insights that are missed when data is looked at only through the lens of statistics or machine learning. It’s something we at Wolfram Research call multiparadigm data science, which I use here for a small excursion through calculus, graph theory, signal processing, optimization and statistics to gain some interesting insights into the engineering of supersonic cars.

Car gauges

Read More »


September 6, 2018 — Brian Wood, Lead Technical Marketing Writer, Document and Media Systems

Hero

In my previous post, I demonstrated the first step of a multiparadigm data science workflow: extracting data. Now it’s time to take a closer look at how the Wolfram Language can help make sense of that data by cleaning it, sorting it and structuring it for your workflow. I’ll discuss key Wolfram Language functions for making imported data easier to browse, query and compute with, as well as share some strategies for automating the process of importing and structuring data. Throughout this post, I’ll refer to the US Election Atlas website, which contains tables of US presidential election results for given years:

Table

Read More »


August 23, 2018 — Brian Wood, Lead Technical Marketing Writer, Document and Media Systems

As the technology manager for Assured Flow Solutions, Andrew Yule has long relied on the Wolfram Language as his go-to tool for petroleum production analytics, from quick computations to large-scale modeling and analysis. “I haven’t come across something yet that the Wolfram Language hasn’t been able to help me do,” he says. So when Yule set out to consolidate all of his team’s algorithms and data into one system, the Wolfram Language seemed like the obvious choice.

Read More »


August 9, 2018 — Swede White, Lead Communications Strategist, Public Relations

Code for America’s National Day of Civic Hacking is coming up on August 11, 2018, which presents a nice opportunity for individuals and teams of all skill levels to participate in the Safe Drinking Water Data Challenge—a program Wolfram is supporting through free access to Wolfram|One and by hosting relevant structured datasets in the Wolfram Data Repository.

According to the state of California, some 200,000 residents of the state have unsafe drinking water coming out of their taps. While the Safe Drinking Water Data Challenge focuses on California, data science solutions could have impacts and applications for providing greater access to potable water in other areas with similar problems.

The goal of this post is to show how Wolfram technologies make it easy to grab data and ask questions of it, so we’ll be taking a multiparadigm approach and allowing our analysis to be driven by those questions in an exploratory analysis, a way to quickly get familiar with the data.

Read More »


July 12, 2018
Patrik Ekenberg, Applications Engineer, Wolfram MathCore
Anna Palmer, Intern, Wolfram MathCore

Life science teaches us to answer everything from “How can vaccines be used to indirectly protect people who haven’t been immunized?” to “Why are variations in eye color almost exclusively present among humans and domesticated animals?” You can now learn to answer these questions by using modeling with Wolfram’s virtual labs. Virtual labs are interactive course materials that are used to make teaching come alive, provide an easy way to study different concepts and promote student curiosity.

Cat with different eye colors

Read More »


June 26, 2018 — Brian Wood, Lead Technical Marketing Writer, Document and Media Systems

In the past few decades, the process of redistricting has moved squarely into the computational realm, and with it the political practice of gerrymandering. But how can one solve the problem of equal representation mathematically? And what can be done to test the fairness of districts? In this post I’ll take a deeper dive with the Wolfram Language—using data exploration with Import and Association, built-in knowledge through the Entity framework and various GeoGraphics visualizations to better understand how redistricting works, where issues can arise and how to identify the effects of gerrymandering.

Read More »


May 24, 2018 — Carlo Giacometti, Kernel Developer, Algorithms R&D

Introduction

Recognizing words is one of the simplest tasks a human can do, yet it has proven extremely difficult for machines to achieve similar levels of performance. Things have changed dramatically with the ubiquity of machine learning and neural networks, though: the performance achieved by modern techniques is dramatically higher compared with the results from just a few years ago. In this post, I’m excited to show a reduced but practical and educational version of the speech recognition problem—the assumption is that we’ll consider only a limited set of words. This has two main advantages: first of all, we have easy access to a dataset through the Wolfram Data Repository (the Spoken Digit Commands dataset), and, maybe most importantly, all of the classifiers/networks I’ll present can be trained in a reasonable time on a laptop.

It’s been about two years since the initial introduction of the Audio object into the Wolfram Language, and we are thrilled to see so many interesting applications of it. One of the main additions to Version 11.3 of the Wolfram Language was tight integration of Audio objects into our machine learning and neural net framework, and this will be a cornerstone in all of the examples I’ll be showing today.

Without further ado, let’s squeeze out as much information as possible from the Spoken Digit Commands dataset!

Spoken Digit Commands dataset

Read More »


March 2, 2018 — Brian Wood, Lead Technical Marketing Writer, Document and Media Systems

Do you want to do more with data available on the web? Meaningful data exploration requires computation—and the Wolfram Language is well suited to the tasks of acquiring and organizing data. I’ll walk through the process of importing information from a webpage into a Wolfram Notebook and extracting specific parts for basic computation. Throughout this post, I’ll be referring to this website hosted by the National Weather Service, which gives 7-day forecasts for locations in the western US:

NOAA website image

Read More »


January 18, 2018
Eila Stiegler, Quality Analysis Manager, Wolfram|Alpha Quality Analysis
Jeffrey Bryant, Research Programmer, Wolfram|Alpha Scientific Content

I love to run. A lot. And many of my coworkers do too. You can find us everywhere, and all the time: on roads, in parks, on hills and mountains, and even running up and down parking decks, a flat lander’s version of hills. And if there is a marathon to be run, we’ll be there as well. With all of the internal interest in running marathons, Wolfram Research created this Marathon Viewer as a sponsorship project for the Christie Clinic Illinois Marathon.

Marathon Viewer website

Here are four of us, shown as dots, participating in the 2017 Illinois Marathon:

How did the above animation and the in-depth look at our performance come about? Read on to find out.

Read More »