WOLFRAM

Education & Academic

Mathematica Summer Camp 2014 Comes to a Close

Thirty students from six different countries came together to explore their passion for programming and mathematics for two weeks in July, and the result was extraordinary! Each and every one of these students created a significant Wolfram Language project during the camp. Their projects and interests ranged from physics and mathematics to automotive engines to poker and blackjack.
Computation & Analysis

Solving the Knight’s Tour on and off the Chess Board

I first came across the knight's tour problem in the early '80s when a performer on the BBC's The Paul Daniels Magic Show demonstrated that he could find a route for a knight to visit every square on the chess board, once and only once, from a random start point chosen by the audience. Of course, the act was mostly showmanship, but it was a few years before I realized that he had simply memorized a closed (or reentrant) tour (one that ended back where he started), so whatever the audience chose, he could continue the same sequence from that point. In college a few years later, I spent some hours trying, and failing, to find any knight's tour, using pencil and paper in various systematic and haphazard ways. And for no particular reason, this memory came to me while I was driving to work today, along with the realization that the problem can be reduced to finding a Hamiltonian cycle—a closed path that visits every vertex—of the graph of possible knight moves. Something that is easy to do in Mathematica. Here is how.
Products

Wolfram SystemModeler in Electrical Engineering Courses

Explore the contents of this article with a free Wolfram SystemModeler trial. I'm an electrical engineer by training. In my first circuits class, all calculations were done by hand, and we could check solutions with unintuitive circuit simulators using the SPICE methodology. With SystemModeler I think it's easier than ever to get started building virtual circuits and trying what-if scenarios for electrical circuits and systems. In this blog post, I'll start from very basic circuits with components such as resistors and inductors and gradually add more complexity in the form of amplifiers and switching circuits. If you want to follow along, you can download a trial of SystemModeler. It's also available with a student license, or you can buy a home-use license. Let's start with the simplest electrical circuit I can think of:
Best of Blog

Which Is Closer: Local Beer or Local Whiskey?

In today's blog post, we will use some of the new features of the Wolfram Language, such as language processing, geometric regions, map-making capabilities, and deploying forms to analyze and visualize the distribution of beer breweries and whiskey distilleries in the US. In particular, we want to answer the core question: for which fraction of the US is the nearest brewery further away than the nearest distillery? Disclaimer: you may read, carry out, and modify inputs in this blog post independent of your age. Hands-on taste tests might require a certain minimal legal age (check your countries' and states' laws). We start by importing two images from Wikipedia to set the theme; later we will use them on maps.
Education & Academic

Fixing Bad Astrophotography II: Imaging Mars with Mathematica

The planet Mars comes into opposition, the point closest to the Earth, about every 780 days, or a bit over two years. The Martian opposition this year was on April 9. This past May, on a rare clear, warm night, I attempted to capture some images of the red planet. Unfortunately once I had my telescope set up, Mars had passed behind a large tree, so the images I captured were distorted by tree branches. Nevertheless, I did manage to capture a set of frames, and hoped that image processing with Mathematica could produce something usable.
Education & Academic

Computational Knowledge and the Future of Pure Mathematics

Every four years for more than a century there’s been an International Congress of Mathematicians (ICM) held somewhere in the world. In 1900 it was where David Hilbert announced his famous collection of math problems—and it’s remained the top single periodic gathering for the world’s research mathematicians. This year the ICM is in Seoul, and […]

Education & Academic

Rosetta—First Mission to Orbit and Land on a Comet

We are reposting this blog post due to the ESA's success yesterday, August 6, 2014. We recently posted a blog entry celebrating the anniversary of the Apollo 11 landing on the Moon. Now, just a couple weeks later, we are preparing for another first: the European Space Agency's attempt to orbit and then land on a comet. The Rosetta spacecraft was launched in 2004 with the ultimate goal of orbiting and landing on comet 67P/Churyumov--Gerasimenko. Since the launch, Rosetta has already flown by asteroid Steins, in 2008, and asteroid 21 Lutetia, in 2010. NASA and the European Space Agency (ESA) have a long history of sending probes to other solar system bodies that then orbit those bodies. The bodies have usually been nice, well-behaved, and spherical, making orbital calculations a fairly standard thing. But, as Rosetta recently started to approach comet 67P, we began to get our first views of this alien world. And it is far from spherical.
Education & Academic

The ABCD of Divergent Series

What is the sum of all the natural numbers? Intuition suggests that the answer is infinity, and, in calculus, the natural numbers provide a simple example of a divergent series. Yet mathematicians and physicists have found it useful to assign fractional, negative, or even zero values to the sums of such series. My aim in writing this post is to clear up some of the mystery that surrounds these seemingly bizarre results for divergent series. More specifically, I will use Sum and other functions in Mathematica to explain the sense in which the following statements are true. The significance of the labels A, B, C, and D for these examples will soon become clear!
Announcements & Events

Wolfram Language and Mathematica Updated for the Raspberry Pi

Earlier this month we released Mathematica 10, a major update to Wolfram's flagship desktop product. It contains over 700 new functions and improvements to just about every part of the system. Today I'm happy to announce an update for Mathematica and the Wolfram Language for the Raspberry Pi that brings those new features to the Raspberry Pi. To get the new version of the Wolfram Language, simply run this command in a terminal on your Raspberry Pi: sudo apt-get update && sudo apt-get install wolfram-engine This new version will also be pre-installed in the next release of NOOBS, the easy setup system for the Raspberry Pi.