Wolfram Computation Meets Knowledge

Search Results for 'quantum computation'

Current Events & History

The Singular Euler–Maclaurin Expansion A New Twist to a Centuries-Old Problem

Of all mathematical operations, addition is the most basic: It’s what we learn first in school. Historically, it is the most ancient. While the simple task of getting the sum of two numbers is simple, sums of many numbers can easily turn into a challenging numerical problem if the number of summands is very large.

Announcements & Events

Wolfram Technologies in Print: Featuring New Authors, Books and Subject Areas

Wolfram Language users make up an incredibly diverse community. People from all around the globe use Wolfram technologies in a variety of fields and industries. High-school and college students begin to use the Wolfram Language in all types of classes as well as for their own projects, and educators at all institutional levels use Wolfram products to prepare for and teach courses—at the world’s top 200 universities and beyond.

We’ve rounded up some of our users’ recently published books, and were honored to speak with two authors about their projects.
Education & Academic

Pandemic-Inspired Innovations Make for the Best Wolfram Summer School Yet

For more on Wolfram’s summer education programs, read our post about the Wolfram Summer Camp.

The 18th annual Wolfram Summer School has just thrown its graduation party in High Fidelity, a virtual world augmented with spatial audio. Students and faculty sang together during karaoke with a DJ and jukebox, chatted away mixing techspeak and humor, said farewells and had a ball celebrating the completion of the program. Due to the COVID-19 pandemic, we chose to make our summer programs more accessible to the students and faculty from all corners of the world—this year from 25 countries and all populated continents.

Education & Academic

Chemical Solutions: Step-by-Step Chemistry Series

Last week, we kicked off a four-part series on Wolfram|Alpha's step-by-step chemistry offerings with chemical reactions. Future posts will cover chemical structure and bonding along with quantum chemistry. We continue this week with chemical solutions, another foundational component of all chemistry classes.

From the blood in your veins to the oceans covering the planet, solutions are everywhere! Understanding their chemical properties is essential to sustaining life, creating new materials and treating illness. As such, disciplines ranging from biology to material science to the health professions all must be comfortable doing solution-related computations.

To master such calculations, the step-by-step results provide stepwise guides that can be viewed one step at a time or all at once. Read on for example problems covering solute concentration, solution preparation, pKa and colligative properties.

Education & Academic

On the Polygon Front Lines: Visualizing the Amplituhedron with the Wolfram Language

It’s rare to hear polygons mentioned in a physics class, even in higher education. This may seem unexpected given the fundamental role they play in mathematics. However, over the last few years, polygons have come to the front line in many areas of theoretical physics, helping us understand the laws of nature with their astonishing beauty.

This is particularly true in the field of particle physics, where a new geometrical object has been found to be connected to particle dynamics: the amplituhedron. It represents a novelty not only in physics but also in mathematics, generalizing the concept of a convex polygon. In this blog post, I will first discuss its relation to particle physics, and then how to visualize its geometry using the Wolfram Language.

Announcements & Events

Wolfram Technology Conference 2019: It’s a Wrap!

It’s been a whirlwind week of talks, training, workshops, networking and special events, and we’ve just closed another successful Wolfram Technology Conference! The week offered a multitude of opportunities for attendees and internal staff alike to connect, learn and enjoy unique experiences one can only get in Champaign, Illinois, every October. I’m happy to provide some highlights from the week and invite you to save the date to join us next year: October 6–9, 2020.

We began this week with pre-conference training on topics from machine learning and neural networks to application building and “Computational X,” offering headquarters tours and an opening reception before the “real” conference even began. Monday’s opening keynote by CEO Stephen Wolfram covered a ton of ground, from a Version 12 recap to a roadmap of things to come. True to tradition, Stephen uncovered bugs in pre-release versions of our software, livecoded examples and gave the audience so much to look forward to.

Computation & Analysis

Doing Data Science Better with Wolfram and the Multiparadigm Approach

Just as Wolfram was doing AI before it was cool, so have we been doing data science since before it was mainstream. A prime example is the creation of Wolfram|Alpha—a massive project that involved engineering, modeling, analyzing, visualizing and interfacing with terabytes of data, developing a natural language interface, and deploying results in a sensible way. Wolfram|Alpha itself is a tool for doing data science, and its continued success is largely because of the underlying strategy we used to build it: a multiparadigm approach driven by natural curiosity, exploring all kinds of data, using advanced methods from a range of areas and automating as much as possible.

Any approach to data science can only be as effective as the computational tools driving it; luckily for us, we had the Wolfram Language at our disposal. Leveraging its universal symbolic representation, high-level automation and human readability—as well as its broad range of built-in computation, knowledge and interfaces—streamlined our process to help bring Wolfram|Alpha to fruition. In this post, I’ll discuss some key tenets of the multiparadigm approach, then demonstrate how they combine with the computational intelligence of the Wolfram Language to make the ideal workflow for not only discovering and presenting insights from your data, but also for creating scalable, reusable applications that optimize your data science processes.

Current Events & History

Computing Exact Uncertainties—Physical Constants in the Current and in the New SI

Introduction

In the so-called "new SI," the updated version of the International System of Units that will define the seven base units (second, meter, kilogram, ampere, kelvin, mole and candela) and that goes into effect May 20 of 2019, all SI units will be definitionally based on exact values of fundamental constants of physics. And as a result, all the named units of the SI (newton, volt, ohm, pascal, etc.) will ultimately be expressible through fundamental constants. (Finally, fundamental physics will be literally ruling our daily life 😁.)

Here is how things will change from the evening of Monday, May 20, to the morning of Tuesday, May 21, of this year.