WOLFRAM

The Wolfram|Alpha Blog is now part of the Wolfram Blog. Please update your subscriptions and follow us here.
Announcements & Events

New in 13: Trees

Two years ago we released Version 12.0 of the Wolfram Language. Here are the updates in trees since then, including the latest features in 13.0. The contents of this post are compiled from Stephen Wolfram's Release Announcements for 12.1, 12.2, 12.3 and 13.0.

 

Trees! (May 2021)

Based on the number of new built-in functions the clear winner for the largest new framework in Version 12.3 is the one for trees. We’ve been able to handle trees as a special case of graphs for more than a decade (and of course all symbolic expressions in the Wolfram Language are ultimately represented as trees). But in Version 12.3 we’re introducing trees as first-class objects in the system.
Education & Academic

New in 13: Cryptography, Blockchains & NFTs

Two years ago we released Version 12.0 of the Wolfram Language. Here are the updates in cryptography, blockchains and NFTs since then, including the latest features in 13.0. The contents of this post are compiled from Stephen Wolfram's Release Announcements for 12.1, 12.2, 12.3 and 13.0.

 

Cryptography & Security (December 2020)

One of the things we want to do with Wolfram Language is to make it as easy as possible to connect with pretty much any external system. And in modern times an important part of that is being able to conveniently handle cryptographic protocols. And ever since we started introducing cryptography directly into the Wolfram Language five years ago, I’ve been surprised at just how much the symbolic character of the Wolfram Language has allowed us to clarify and streamline things to do with cryptography.
Computation & Analysis

Bowl a Strike with Wolfram System Modeler

Explore the contents of this article with a free Wolfram System Modeler trial. Bowling is a simple game that consists of a ball, 10 pins and a lane. You take the ball, come to the starting line, aim between pins 1 and 3 and throw the ball. You instinctively assume that the ball and the lane are perfect and expect the ball to go straight where you aimed.

Current Events & History

Classical Ciphers to Digital Signatures Wolfram U Launches New Cryptography Course

Cryptography has been around since time immemorial, and in the modern technological age is an omnipresent, often invisible middleman that helps protect your data. As a field of study, it combines mathematics, computer science, physics and even linguistics. As a tool, it concerns informatics, business, finance, politics, human rights—any sector that deals with personal information or requires communication. In fact, it’s hard to imagine a sector that cryptography does not impact.
Education & Academic

The Physicalization of Metamathematics and Its Implications for the Foundations of Mathematics

One of the many surprising (and to me, unexpected) implications of our Physics Project is its suggestion of a very deep correspondence between the foundations of physics and mathematics. We might have imagined that physics would have certain laws, and mathematics would have certain theories, and that while they might be historically related, there wouldn’t be any fundamental formal correspondence between them.

But what our Physics Project suggests is that underneath everything we physically experience there is a single very general abstract structure—that we call the ruliad—and that our physical laws arise in an inexorable way from the particular samples we take of this structure. We can think of the ruliad as the entangled limit of all possible computations—or in effect a representation of all possible formal processes. And this then leads us to the idea that perhaps the ruliad might underlie not only physics but also mathematics—and that everything in mathematics, like everything in physics, might just be the result of sampling the ruliad.

Announcements & Events

New in 13: Symbolic & Numeric Computation

Math is big, and math is important. And for the Wolfram Language (which also means for Mathematica) we’re always pushing the frontiers of what’s computable in math.

One long-term story has to do with special functions. Back in Version 1.0 we already had 70 special functions.