WOLFRAM

Wolfram Language

Education & Academic

Getting to the Point: Asymptotic Expansions in the Wolfram Language

Asymptotic expansions have played a key role in the development of fields such as aerodynamics, quantum physics and mathematical analysis, as they allow us to bridge the gap between intricate theories and practical calculations. Indeed, the leading term in such an expansion often gives more insight into the solution of a problem than a long and complicated exact solution. Version 11.3 of the Wolfram Language introduces two new functions, AsymptoticDSolveValue and AsymptoticIntegrate, which compute asymptotic expansions for differential equations and integrals, respectively. Here, I would like to give you an introduction to asymptotic expansions using these new functions.
Computation & Analysis

How Optimistic Do You Want to Be? Bayesian Neural Network Regression with Prediction Errors

Neural networks are very well known for their uses in machine learning, but can be used as well in other, more specialized topics, like regression. Many people would probably first associate regression with statistics, but let me show you the ways in which neural networks can be helpful in this field. They are especially useful if the data you're interested in doesn't follow an obvious underlying trend you can exploit, like in polynomial regression.

In a sense, you can view neural network regression as a kind of intermediary solution between true regression (where you have a fixed probabilistic model with some underlying parameters you need to find) and interpolation (where your goal is mostly to draw an eye-pleasing line between your data points). Neural networks can get you something from both worlds: the flexibility of interpolation and the ability to produce predictions with error bars like when you do regression.

Announcements & Events

Learning to Listen: Neural Networks Application for Recognizing Speech

Introduction

Recognizing words is one of the simplest tasks a human can do, yet it has proven extremely difficult for machines to achieve similar levels of performance. Things have changed dramatically with the ubiquity of machine learning and neural networks, though: the performance achieved by modern techniques is dramatically higher compared with the results from just a few years ago. In this post, I'm excited to show a reduced but practical and educational version of the speech recognition problem---the assumption is that we’ll consider only a limited set of words. This has two main advantages: first of all, we have easy access to a dataset through the Wolfram Data Repository (the Spoken Digit Commands dataset), and, maybe most importantly, all of the classifiers/networks I’ll present can be trained in a reasonable time on a laptop.

It’s been about two years since the initial introduction of the Audio object into the Wolfram Language, and we are thrilled to see so many interesting applications of it. One of the main additions to Version 11.3 of the Wolfram Language was tight integration of Audio objects into our machine learning and neural net framework, and this will be a cornerstone in all of the examples I’ll be showing today.

Without further ado, let’s squeeze out as much information as possible from the Spoken Digit Commands dataset!

Education & Academic

Launching the Wolfram Challenges Site

The more one does computational thinking, the better one gets at it. And today we’re launching the Wolfram Challenges site to give everyone a source of bite-sized computational thinking challenges based on the Wolfram Language. Use them to learn. Use them to stay sharp. Use them to prove how great you are. The Challenges typically […]

Education & Academic

User Research: Deep Learning for Gravitational Wave Detection with the Wolfram Language

Daniel George is a graduate student at the University of Illinois at Urbana-Champaign, Wolfram Summer School alum and Wolfram intern whose award-winning research on deep learning for gravitational wave detection recently landed in the prestigious pages of Physics Letters B in a special issue commemorating the Nobel Prize in 2017. We sat down with Daniel to learn more about his research and how the Wolfram Language plays a part in it.
Announcements & Events

Roaring into 2018 with Another Big Release: Launching Version 11.3 of the Wolfram Language & Mathematica

Last September we released Version 11.2 of the < ahref="https://www.wolfram.com/language/"Wolfram Language and Mathematica—with all sorts of new functionality, including 100+ completely new functions. Version 11.2 was a big release. But today we’ve got a still bigger release: Version 11.3 that, among other things, includes nearly 120 completely new functions. This June 23rd it’ll be 30 […]

Computation & Analysis

Web Scraping with the Wolfram Language, Part 1: Importing and Interpreting

Do you want to do more with data available on the web? Meaningful data exploration requires computation—and the Wolfram Language is well suited to the tasks of acquiring and organizing data. I'll walk through the process of importing information from a webpage into a Wolfram Notebook and extracting specific parts for basic computation. Throughout this post, I'll be referring to this website hosted by the National Weather Service, which gives 7-day forecasts for locations in the western US:
Education & Academic

Cultivating New Solutions for the Orchard-Planting Problem

Some trees are planted in an orchard. What is the maximum possible number of distinct lines of three trees? In his 1821 book Rational Amusement for Winter Evenings, J. Jackson put it this way: Fain would I plant a grove in rows But how must I its form compose             With three trees in each row; To have as many rows as trees; Now tell me, artists, if you please:             'Tis all I want to know. Those familiar with tic-tac-toe, three-in-a-row might wonder how difficult this problem could be, but it’s actually been looked at by some of the most prominent mathematicians of the past and present. This essay presents many new solutions that haven’t been seen before, shows a general method for finding more solutions and points out where current best solutions are improvable.