WOLFRAM

Other Application Areas

Education & Academic

Mathematics Genealogy Project: Computational Exploration in the Wolfram Language

The Mathematics Genealogy Project (MGP) is a project dedicated to the compilation of information about all mathematicians of the world, storing this information in a database and exposing it via a web-based search interface. The MGP database contains more than 230,000 mathematicians as of July 2018, and has continued to grow roughly linearly in size since its inception in 1997.

In order to make this data more accessible and easily computable, we created an internal version of the MGP data using the Wolfram Language’s entity framework. Using this dataset within the Wolfram Language allows one to easily make computations and visualizations that provide interesting and sometimes unexpected insights into mathematicians and their works. Note that for the time being, these entities are defined only in our private dataset and so are not (yet) available for general use.
Computation & Analysis

Four Minecraft Projects with the Wolfram Language

A couple of weeks ago I shared a package for controlling the Raspberry Pi version of Minecraft from Mathematica (either on the Pi or from another computer). You can control the Minecraft API from lots of languages, but the Wolfram Language is very well aligned to this task—both because the rich, literate, multiparadigm style of the language makes it great for learning coding, and because its high-level data and computation features let you get exciting results very quickly.

Today, I wanted to share four fun Minecraft project ideas that I had, together with simple code for achieving them. There are also some ideas for taking the projects further.
Computation & Analysis

Programming Minecraft on the Raspberry Pi

The standard Raspbian software on the Raspberry Pi comes with a basic implementation of Minecraft and a full implementation of the Wolfram Language. Combining the two provides a fun playground for learning coding. If you are a gamer, you can use the richness of the Wolfram Language to programmatically generate all kinds of interesting structures in the game world, or to add new capabilities to the game. If you are a coder, then you can consider Minecraft just as a fun 3D rendering engine for the output of your code.

Computation & Analysis

The Shape of the Vote: Exploring Congressional Districts with Computation

In the past few decades, the process of redistricting has moved squarely into the computational realm, and with it the political practice of gerrymandering. But how can one solve the problem of equal representation mathematically? And what can be done to test the fairness of districts? In this post I’ll take a deeper dive with the Wolfram Language—using data exploration with Import and Association, built-in knowledge through the Entity framework and various GeoGraphics visualizations to better understand how redistricting works, where issues can arise and how to identify the effects of gerrymandering.

Computation & Analysis

How Optimistic Do You Want to Be? Bayesian Neural Network Regression with Prediction Errors

Neural networks are very well known for their uses in machine learning, but can be used as well in other, more specialized topics, like regression. Many people would probably first associate regression with statistics, but let me show you the ways in which neural networks can be helpful in this field. They are especially useful if the data you're interested in doesn't follow an obvious underlying trend you can exploit, like in polynomial regression.

In a sense, you can view neural network regression as a kind of intermediary solution between true regression (where you have a fixed probabilistic model with some underlying parameters you need to find) and interpolation (where your goal is mostly to draw an eye-pleasing line between your data points). Neural networks can get you something from both worlds: the flexibility of interpolation and the ability to produce predictions with error bars like when you do regression.

Education & Academic

User Research: Deep Learning for Gravitational Wave Detection with the Wolfram Language

Daniel George is a graduate student at the University of Illinois at Urbana-Champaign, Wolfram Summer School alum and Wolfram intern whose award-winning research on deep learning for gravitational wave detection recently landed in the prestigious pages of Physics Letters B in a special issue commemorating the Nobel Prize in 2017. We sat down with Daniel to learn more about his research and how the Wolfram Language plays a part in it.
Current Events & History

The Wolfram Language Bridges Mathematics and the Arts

Every summer, 200-some artists, mathematicians and technologists gather at the Bridges conference to celebrate connections between mathematics and the arts. It's five exuberant days of sharing, exploring, puzzling, building, playing and discussing diverse artistic domains, from poetry to sculpture. The Wolfram Language is essential to many Bridges attendees' work. It's used to explore ideas, puzzle out technical details, design prototypes and produce output that controls production machines. It's applied to sculpture, graphics, origami, painting, weaving, quilting—even baking. In the many years I've attended the Bridges conferences, I've enjoyed hearing about these diverse applications of the Wolfram Language in the arts. Here is a selection of Bridges artists' work.
Education & Academic

New Books on Applications of the Wolfram Language

We're always excited to see new books that illustrate applications of Wolfram technology in a wide range of fields. Below is another set of recently published books using the Wolfram Language to explore computational thinking. From André Dauphiné's outstanding geographical studies of our planet to Romano and Caveliere's work on the geometric optics that help us study the stars, we find a variety of fields served by Wolfram technology.