News, Views & Insights
Other Application Areas
Citizen Data Science with Civic Hacking: The Safe Drinking Water Data Challenge
Code for America’s National Day of Civic Hacking is coming up on August 11, 2018, which presents a nice opportunity for individuals and teams of all skill levels to participate in the Safe Drinking Water Data Challenge—a program Wolfram is supporting through free access to Wolfram|One and by hosting relevant structured datasets in the Wolfram Data Repository.
According to the state of California, some 200,000 residents of the state have unsafe drinking water coming out of their taps. While the Safe Drinking Water Data Challenge focuses on California, data science solutions could have impacts and applications for providing greater access to potable water in other areas with similar problems.
The goal of this post is to show how Wolfram technologies make it easy to grab data and ask questions of it, so we’ll be taking a multiparadigm approach and allowing our analysis to be driven by those questions in an exploratory analysis, a way to quickly get familiar with the data.Mathematics Genealogy Project: Computational Exploration in the Wolfram Language
The Mathematics Genealogy Project (MGP) is a project dedicated to the compilation of information about all mathematicians of the world, storing this information in a database and exposing it via a web-based search interface. The MGP database contains more than 230,000 mathematicians as of July 2018, and has continued to grow roughly linearly in size since its inception in 1997.
In order to make this data more accessible and easily computable, we created an internal version of the MGP data using the Wolfram Language’s entity framework. Using this dataset within the Wolfram Language allows one to easily make computations and visualizations that provide interesting and sometimes unexpected insights into mathematicians and their works. Note that for the time being, these entities are defined only in our private dataset and so are not (yet) available for general use.Four Minecraft Projects with the Wolfram Language
A couple of weeks ago I shared a package for controlling the Raspberry Pi version of Minecraft from Mathematica (either on the Pi or from another computer). You can control the Minecraft API from lots of languages, but the Wolfram Language is very well aligned to this task—both because the rich, literate, multiparadigm style of the language makes it great for learning coding, and because its high-level data and computation features let you get exciting results very quickly.
Today, I wanted to share four fun Minecraft project ideas that I had, together with simple code for achieving them. There are also some ideas for taking the projects further.Programming Minecraft on the Raspberry Pi
The standard Raspbian software on the Raspberry Pi comes with a basic implementation of Minecraft and a full implementation of the Wolfram Language. Combining the two provides a fun playground for learning coding. If you are a gamer, you can use the richness of the Wolfram Language to programmatically generate all kinds of interesting structures in the game world, or to add new capabilities to the game. If you are a coder, then you can consider Minecraft just as a fun 3D rendering engine for the output of your code.
The Shape of the Vote: Exploring Congressional Districts with Computation
In the past few decades, the process of redistricting has moved squarely into the computational realm, and with it the political practice of gerrymandering. But how can one solve the problem of equal representation mathematically? And what can be done to test the fairness of districts? In this post I’ll take a deeper dive with the Wolfram Language—using data exploration with Import and Association, built-in knowledge through the Entity framework and various GeoGraphics visualizations to better understand how redistricting works, where issues can arise and how to identify the effects of gerrymandering.
How Optimistic Do You Want to Be? Bayesian Neural Network Regression with Prediction Errors
Neural networks are very well known for their uses in machine learning, but can be used as well in other, more specialized topics, like regression. Many people would probably first associate regression with statistics, but let me show you the ways in which neural networks can be helpful in this field. They are especially useful if the data you're interested in doesn't follow an obvious underlying trend you can exploit, like in polynomial regression.
In a sense, you can view neural network regression as a kind of intermediary solution between true regression (where you have a fixed probabilistic model with some underlying parameters you need to find) and interpolation (where your goal is mostly to draw an eye-pleasing line between your data points). Neural networks can get you something from both worlds: the flexibility of interpolation and the ability to produce predictions with error bars like when you do regression.