News, Views & Insights
Computational Thinking
Deep Learning and Computer Vision: Converting Models for the Wolfram Neural Net Repository
Julian Francis, a longtime user of the Wolfram Language, contacted us with a potential submission for the Wolfram Neural Net Repository. The Wolfram Neural Net Repository consists of models that researchers at Wolfram have either trained in house or converted from the original code source, curated, thoroughly tested and finally have rendered the output in a very rich computable knowledge format. Julian was our very first user to go through the process of converting and testing the nets.
We thought it would be interesting to interview him on the entire process of converting the models for the repository so that he could share his experiences and future plans to inspire others.Computation + Literature in High School: Doctoral-Level Digital Humanities
Thanks to the Wolfram Language, English teacher Peter Nilsson is empowering his students with computational methods in literature, history, geography and a range of other non-STEM fields. Working with a group of other teachers at Deerfield Academy, he developed Distant Reading: an innovative course for introducing high-level digital humanities concepts to high-school students. Throughout the course, students learn in-demand coding skills and data science techniques while also finding creative ways to apply computational thinking to real-world topics that interest them.
In this video, Nilsson describes how the built-in knowledge, broad subject coverage and intuitive coding workflow of the Wolfram Language were crucial to the success of his course:
Martian Commutes and Werewolf Teeth: Using Wolfram|Alpha for Writing Research
The Winners of the 2018 One-Liner Competition
Cleaning and Structuring Large Datasets: Web Scraping with the Wolfram Language, Part 2
In my previous post, I demonstrated the first step of a multiparadigm data science workflow: extracting data. Now it's time to take a closer look at how the Wolfram Language can help make sense of that data by cleaning it, sorting it and structuring it for your workflow. I'll discuss key Wolfram Language functions for making imported data easier to browse, query and compute with, as well as share some strategies for automating the process of importing and structuring data. Throughout this post, I'll refer to the US Election Atlas website, which contains tables of US presidential election results for given years:
Data Science + Engineering: Building a Centralized Computation Hub
Former Astronaut Creates Virtual Copilot with Wolfram Neural Nets and a Raspberry Pi
Mathematics Genealogy Project: Computational Exploration in the Wolfram Language
The Mathematics Genealogy Project (MGP) is a project dedicated to the compilation of information about all mathematicians of the world, storing this information in a database and exposing it via a web-based search interface. The MGP database contains more than 230,000 mathematicians as of July 2018, and has continued to grow roughly linearly in size since its inception in 1997.
In order to make this data more accessible and easily computable, we created an internal version of the MGP data using the Wolfram Language’s entity framework. Using this dataset within the Wolfram Language allows one to easily make computations and visualizations that provide interesting and sometimes unexpected insights into mathematicians and their works. Note that for the time being, these entities are defined only in our private dataset and so are not (yet) available for general use.