New in 13: Video, Image & Audio
Two years ago we released Version 12.0 of the Wolfram Language. Here are the updates in video, image and audio since then, including the latest features in 13.0. The contents of this post are compiled from Stephen Wolfram’s Release Announcements for 12.1, 12.2, 12.3 and 13.0.
The Beginning of Video Computation (March 2020)
We’ve been working towards it for nearly 15 years… but finally it’s here: computation with video! We introduced images into the language in 2008; audio in 2016. But now in Version 12.1 we for the first time have computation with video. There’ll be lots more coming in future releases, but there’s already quite a bit in 12.1.
So… just like Image and Audio, which symbolically represent images and audio, we now have Video.
This asks for five frames from a video:
✕
VideoFrameList[ Video["ExampleData/Caminandes.mp4", Appearance -> Automatic, AudioOutputDevice -> Automatic, SoundVolume -> Automatic], 5] |
This asks to make a time series of the mean color of every frame:
✕
VideoTimeSeries[Mean, Video["ExampleData/Caminandes.mp4", Appearance -> Automatic, AudioOutputDevice -> Automatic, SoundVolume -> Automatic]] |
And then one can just plot the time series:
✕
DateListPlot[%, PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[ 0, 0, 1]}] |
Video is a complicated area, with lots of different encodings optimized for different purposes. In Version 12.1 we’re supporting more than 250 of them, for import, export and transcoding. You can refer to a video on the web as well:
✕
Video["http://exampledata.wolfram.com/cars.avi"] |
And the big thing is that video is now getting integrated into everything. So, for example, you can immediately use image processing or audio processing or machine learning functions on video. Here’s an example plotting the location of cars in the video above:
✕
v = Video["http://exampledata.wolfram.com/cars.avi"] |
✕
ts = VideoTimeSeries[Point[ImagePosition[#, Entity["Word", "car"]]] &, v] |
✕
HighlightImage[ VideoExtractFrames[v, Quantity[5, "Seconds"]], {PointSize[Medium], Values[ts]}] |
Let’s say you’ve got a Manipulate, or an animation (say from ListAnimate). Well, now you can just immediately make a video of it:
✕
Video[CloudGet["https://wolfr.am/L9r00rk5"]] |
You can add an audio track, then export the whole thing directly to a file, the cloud, etc.
So is this new video capability really industrial strength? I’ve been recording hundreds of hours of video in connection with a new project I’m working on. So I decided to try our new capabilities on it. It’s spectacular! I could take a 4-hour video, and immediately extract a bunch of sample frames from it, and then—yes, in a few hours of CPU time—“summarize the whole video”, using SpeechRecognize to do speech-to-text on everything that was said and then generating a word cloud:
Speaking of audio, there’s new stuff in Version 12.1 there too. We’ve redone the GUI for in-notebook Audio objects. And we’ve introduced SpeechInterpreter, which is the spoken analog of the Interpreter function, here taking an audio object and returning what airline name was said in it:
✕
SpeechInterpreter["Airline"][CloudGet["https://wolfr.am/L9r410jA"]] |
In Version 12.0 we introduced the important function TextCases for extracting from text hundreds of kinds of entities and “text content types” (which as of 12.1 now have their own documentation pages). In 12.1 we’re also introducing SpeechCases, which does the same kind of thing for audio speech.
Mainstreaming Video (December 2020)
In Version 12.1 we began the process of introducing video as a built-in feature of the Wolfram Language. Version 12.2 continues that process. In 12.1 we could only handle video in desktop notebooks; now it’s extended to cloud notebooks—so when you generate a video in Wolfram Language it’s immediately deployable to the cloud.
A major new video feature in 12.2 is VideoGenerator. Provide a function that makes images (and/or audio), and VideoGenerator will generate a video from them (here a 4-second video):
✕
VideoGenerator[Graphics3D[AugmentedPolyhedron[Icosahedron[], # - 2], ImageSize -> {200, 200}] &, 4] |
To add a sound track, we can just use VideoCombine:
✕
VideoCombine[{%, \!\(\* TagBox[ RowBox[{"CloudGet", "[", "\"\<https://wolfr.am/ROWzckqS\>\"", "]"}], Audio`AudioBox["AudioClass" -> "AudioData"], Editable->False, Selectable->False]\)}] |
So how would we edit this video? In Version 12.2 we have programmatic versions of standard video-editing functions. VideoSplit, for example, splits the video at particular times:
✕
VideoSplit[%, {.3, .5, 2}] |
But the real power of the Wolfram Language comes in systematically applying arbitrary functions to videos. VideoMap lets you apply a function to a video to get another video. For example, we could progressively blur the video we just made:
✕
VideoMap[Blur[#Image, 20 #Time] &, %%] |
There are also two new functions for analyzing videos—VideoMapList and VideoMapTimeSeries—which respectively generate a list and a time series by applying a function to the frames in a video, and to its audio track.
Another new function—highly relevant for video processing and video editing—is VideoIntervals, which determines the time intervals over which any given criterion applies in a video:
✕
VideoIntervals[%, Length[DominantColors[#Image]] < 3 &] |
Now, for example, we can delete those intervals in the video:
✕
VideoDelete[%, %%] |
A common operation in the practical handling of videos is transcoding. And in Version 12.2 the function VideoTranscode lets you convert a video among any of the over 300 containers and codecs that we support. By the way, 12.2 also has new functions ImageWaveformPlot and ImageVectorscopePlot that are commonly used in video color correction:
✕
ImageVectorscopePlot[CloudGet["https://wolfr.am/ROWzsGFw"]] |
One of the main technical issues in handling video is dealing with the large amount of data in a typical video. In Version 12.2 there’s now finer control over where that data is stored. The option GeneratedAssetLocation (with default $GeneratedAssetLocation) lets you pick between different files, directories, local object stores, etc.
But there’s also a new function in Version 12.2 for handling “lightweight video”, in the form of AnimatedImage. AnimatedImage simply takes a list of images and produces an animation that immediately plays in your notebook—and has everything directly stored in your notebook:
✕
AnimatedImage[ Table[Rasterize[Rotate[Style["W", 40], \[Theta]]], {\[Theta], 0, 2 Pi, .1}]] |
New in Video (May 2021)
We first introduced video into the Wolfram Language in Version 12.1, and in 12.2 we added many additional video capabilities. In 12.3 we’re adding still more capabilities, with yet more to come.
A major group of new capabilities in 12.3 revolve around programmatic video generation. There are three basic new functions: FrameListVideo, SlideShowVideo and AnimationVideo.
FrameListVideo takes a raw list of images, and assembles a video by treating them as successive raw frames. SlideShowVideo similarly takes a list of images, but now it creates a “slide show video” in which each image is displayed for a specified duration. Here, for example, each image is displayed in the video for 1 second:
✕
SlideShowVideo[{\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzsvQV4XOeZvp+YZI6ZJNuSQbYl2bLFzMzMzMzMzMxMtowyMzuO2bHDDjhx OE3SpE2abdNmt7/7/804ySZpt+3u/rfe9eVc15sZH41mRmfe53ue+zvfOaMQ luwWNempp55Kny7+5xaabZqWFprrPk/8wzMpPTY6KTLCNikjMjoyTSdsstiY KuqGqClPSf/j/1JNlZnys5o2ffI/UFN/UWKbzCRpyYj7/9WaPmOKtGbMnMrM WdOYMVvm4e1MyWs+xfSpTzFj0lPMnDKZhXPmsnL5cjaoKKFtboSFhytuYWF4 JyXhlZKMd3IyYTm5hObk4ZWWiVNsPHaRkRj5+qBtZ8sWA13WKG9g+eoVPLNo nnitWchMncr0yU9LX2OGeK2ZM8TfI97PtBlTxfub8rP3+sO+mDp9kthvk362 X37clzLi39OmSWuqeO4pU6YwefJk6f0fSrJNUj/d9sv64TF/rR51/zzuNWXa ZGlJPs+Htw8/a8ntT+vn236hKZn/uj5+0IS0hC5mfa8JGclzTn4KmSlPMWvO dFYqyqNuoo1vfBD5nc2UjI5RuGM31QeOUDxxiKzx/WQOjpPSNURsSw85gzsp Gt1HXt8OSsX28u0T5A3voWLvMWr2HyOlvZfIqjriquqJrajCKzkNCx9f1CxM Wa2yifkLFzFN0p+THmpy+rRJP75fye3UaU+L/fWwJPtkyrRJP+7LH2vqlH+o x39a/4guJBqT1BN9/PP1Ifmcf6mNv9TJf10fP4y7P277XhczZwldzJD0lHhP YvsyuWWo66vhHupNSVczfSeOMn71MoMXL9B35jR1e3ZROTpMbksjgTnZOEVF EBoTSnJaLGnZiZSV51JRnk9JSQ5ZhdmUisf1Hj/GxIsvM379Oq2HDtGwd4LK 8X0U9o2R09ZHTns3qY0NhBYV4ByfhIGrK0raGiyXl2XmnJlMkrw3UdNnTJb+ zZMluvhh30i18v2+nPb9WPNEH//n65eZYMo0Scaa8u/ZSdL/0x5mBZnv6wct /LR+Orb+tZoh+mWapP9nTpHeTp8uyVESTQivEJqcJnxi3rxZKKqp4hAaSlZz EzuuX+XSr97n9FsvcOr2FV5+8AYX7l5j7MRhyrp7iCwswS9bkp/SiUlLpCYv ge6SFNqyo2hNC6InJ5KGrChyUyNJSY0mr76Mmt2jjF45z7l7t9l7/gjjp4/T MDJERk2V0ForpT2DVA2NkdfTTVF3L/mtPYQXVuIaHoO6sSmLZWXF3zONyeL9 ysx4WmhbksEmSzX9F/7xk5o8dZJUN38rR/1n64k+/ufr33Xx8HP8qVam/qAN qT6m/Lf08YN3SB4zW2hi7vTpyIgxUGbaVFbLr8TC2ZGwknJSOnpJaO4gpqaO 1lNHuf27X3HunZcZOr6f0u4OygeGiCkpxSshGQv/QJzCw4hPjaUmP4m65Eia EvxpiXVme3YAewrDGcsPZ7AgmsaMcPJSwgiP8Sc8PYbW8SFya0qpqM6lvbuW 9qEu+vfsZODAYfoOn6D/+Cm69hyicXgvFYO7KOwcIbO+g8jMQqw9/FDcvJnZ Ek+ZMunHMWXqT7z4l/Uwb03+C2/472rkUffP414/+MQv9fGX/vFf08f0H3PU ZOEVD3PU1KlPi+d5CsVNa3AWXpEsWKBk4gRx3UN4F1VQ2D/A0KG99O8aoaG7 gYq6IgqKswkLDyAyMoD0tBiyM2Kor8ljoKuCtrJEmjIDqQx1oTHMhZ2ZAUwI fexI8mIk2YvhNHGbEcBIfgwDZclUFiaRLTJXSX0NeYXCe6J9yEoLo7wklfbO RlqHBqgVHtKxfS9jh07Sf/A44+ev0X/0PM07D1DY0U9SRTO2wUkoqBkyc+5c pkv2pdQjBYvLTP2P9TFl6sN64h//J+qvjXU/LZnp/56rfqmPf5i/BV/MkMxD id+ZLPL7KhUFAnNzyB8SDLHrIIWjewmrbCCztY3+Q/u4/sJF7r1wlJNDVRxv zeHZ9kxeHa/ial8Bp9qzODdcyYV9nezrr6KpLIEowexRiREUiB6vz4qgqzCG plQ/mtMCaM0IpjcjiIEUf3rj3IVO/BgvjGC8IpG++lxqm6qJE+8lND6SNJHB wiOC8YuOJr2ynPzqapr6+sisriCvroHKzl52nDjD2Kmz1AxuJ05oxD+/CavI DNZoGEgZZfLUp38cX37gkH+v/7xf/NRjnsxf/fNL2v9Sn/i+fuTnH7xgyo8l YdLp0/+KR/x0DkpS0yeJ26eZJpmXnTWdqUIfkry+dMVSrHz9KBjaTcn2/VTs 2MfhKzfp2z7MoRO7OXpuH6dO7uDlZ3fy+tEm7u8r44OdxXyxq4SPduRxb2ch 75zp5Itbu7h/YYzjg1X0lCeRkpmIQ1gkDoGhxKYkkZwSQUqsJ5XZ4TQXxtNT EENvdigdqQGMZfmzO8uXA/mBHK1LZqg6i9KyfErrxHP1d1PT3EhZWxumXr5Y +odiGxiGa0Qk4SkpVLS1s+/iJQ5cvykY6JTQVTnOicVYp9VhndmIgV8Ccsoa Yv9NZ8pkiTdPE5qYJuX0yYKxJsk8zGI/rX9kXvdvbX/U/fO41w988aM//C1+ kJn01zPUz/QhyRgyQiMzmSfxDeEXs4RG9C2sSarqoGB0gormenbvGOatzx7w +Xfv8e0f3+XPX9/jy7fP8cndA1wbLODd3aVcb43hck0on++t5otjLfz2ch8f Hqnn3mger20v51BVAttLYhmoTCEpJgg1A3PWalpg7eZDRJgPeXFeVKUE0ZAS QI/IX62pgYxkB7K/LJKDFRFcaErmWEUM42WxjNelCx3F0VuaSkNRGn6B/ngK zQWn5xGeX0bbkZOceOMBNfuOE1TRSt3uk4JHBnBNyMcpMR/ruDxskytxSCpH yzmAhasVeGrKwzne6dOmSueBJ8k8/Rfc/h9p44djJn9PN4+6fx73+v9fH1OY OVNGMLgM0yY9hbziGnxSMigb2ckukef39fdy9/ZJ4E/w56/4zYNzvHZjN2/f OcjnZ1r56mQzX+4r58P+DG42RvLmYDYfjxfxyXghv96ex+u1odwsDeRKSTDH cwPYnhPMjixvdhRFkxETzgplPWS3GOPlH0RabAjJoe4URLjRlezNnpoMnh2t 4dpYKbtKg5goDeZESQjHSiI4UBLFoOCVtmh3OtNC6ChOpbayiKEDR8hpG8Il o5qo+u0YBOexXM8fPb88katKcIwpICirhIDUXKwj09GJLEYvvlroJZ8tRhbI zHmGpydNlrLJFJm/PEbyjxwTfKKPR1e/ZIv/znFviXdIju/NEOPkjNmT0Xd2 I7+9j5bhUQ6MDnN9vJP3bh7gqw9e5pPnz/PW0T6eH6ngpTN9/E7o5K2RfN7u TOSzwXS+HM7hU1HvtMfyVm0gnzSH8eu2SB7Uh/F8eSivtiZzozaKQ4UB0qw0 nhdGdaIf6QU5OIbHskhemU1q+viHhlOWHUuunxVHR1v4zUd3eX5PHffODnL/ 2h5OdeSyIz+M0bxw+lODGM6N4WBLMUcGGulsrSEiLRdFIx/mbbJj/iZHlm3z ZZVuGKsNo1B2SGGDVSQWIbl4pddgGZWLjrivHlyARmghpgll6PvGs1hhM09P loxDkuMlU/6uPv4z81qPun8e95KRzkv9pKb/sv6+NiTHAWYJ5pg5c7bg08ks XjYP/4Q0WkYOMjQ8zrnRLm6OtXCut5ob+9p5daScD3pz+PpcN7978zBf3NnJ hY4krtRHc685hgeNEXzWGc+Dan/eLHXnwxo/vqwP5Iu6IN6o8ue5Ih9u10Rx ucifi1Vi/C+LYECweGOMM721GTR31GLo7M5aXTvBzZbEpMZTlRZKc0E8b0nY //gQtw90cX5nMwc7CtkrctqEqF21aXRXpNJYkUVRUQGufsFs0LFnnqIti5Wc kVXzZo1RBGtMopEX+pAVOlmmE8IK/QiUnTLQ9stGyycddd9MlD0zWe+Ti25M NeZheazZZshkmenS44s/nU//sdclGewHbfwD+njiH/8kffyy5//CT/62RmZI 5mxnikw1e5Z07dJaRQUSy6vpG9vDnr5ejo+0caa7gonKdEbyo0Tej+OrQ038 dm8d7x1r4/WDjRwqCmMkw523uhP5pC2O+1V+vFPgylfNQXzbH8On1d58Vu3L b+uD+bAhmGezHDmf4sLZDG/OiKy1N8efnkRv+tOCqI5wpjEnhl2Hd+GXkMSy dZooqJnQXFchWCSQ2mQfdtWlsFO8jz2VSQyXxTFQkUR/VTo5KdHoGFqwdpul yGnmzFtjwBIlGxZusGXBJidW64ey2TGFJdu8WbLZk6VbfZDTChaeEigtBcNw 1lknssExFVW3ZJRdk1nvmsE2/wIMwopYb+LMtHkLpHNckjmMhxqZKq2pMtPE 9r+ui791XP1R98/jXv9dfUyfOU3w92zpfI2KrhrFnX2M7jvIwcEedjdVsKe1 iO2iB49WJ3GjKYc71Sm8t72E11tjeb4+iqNFgiGSPTmQ6cX96iDeLvXjTqY9 HxZ7IICA7/pi+LLOn39pieDrjkheK/fgZoYrZ5M9GEx0ojnKjiqhiYIICWd4 E+vnQKSrFfUFqQyOdBARG4mKmi5u/iGMjvRK57RqCxJpriqkp6ONpOQ0dExt UNIyZ6miHnNWiFpuxJyVhixcZ8Y8BWOeWWPMMg1PdHzzUXZMZpVpGGrOqSxQ cmTBRkcWb3JlqbIHizf7slQjCHnTcNS9klAT+thkn8w68TsbPDJRDy1lg00I MxYseTi/JV2zNfVnNfU/4PJfzvM+yVf/e/Xx8/WE05g+5Sn07Zyp2HGYkfFd HBnrZbSunNHKXHbWZXG8Po13Rgr5YqyM91tTud+dwCdDwkdGUnlnMIPnm6N5 uymKj5sieLUkkKv57rwrfOKL1iheyXPn+Wxn7pUHcqfEl1MZjpxJceVwijcV oZbEe5kR7euEr4cDTvZWGBrp4GSsTbSrGVWF8dRVpFBZnoZfeAgJ6fmEhsYJ PTijbe3D6q0WzJbTFHrQ5JnVBixSsRG+YMlyFStWbHFm8UYbFq+3ZNF6cxQt w3BKaRYayUXJMR7H1Ga2iv5fpiW8RNWDRUpuLFL2YomKD0u2uLPVJR4tz1SU BJ8o2Ueh6BjLGqcklD2yULYOZNYyhYd9LvGNn+rjP8khj7p/Hvf6r+nje98Q JVmXp+/lT/OuI+wc2clze8fZ21bBeG0mZ9rzOVOfJHJTNr/flcNXOzL47e4c OFvNt0eK+M14Lh/sKOSTPUV82hXH63WhXCsP4UxlMGcL3DgvfOJYkjMnMoS/ pLkxFm7NYKQdPVEO9Me40JLoQWSAI3b2lmgYGqBmYISRpRVujlYEe5qSk+BL XXYcFXlxjAy0EhIdwWYjM8EUxijpGKCpp4+NoTHuJoaE+Hji5B/NSnV7nlln jOxmR5GrrJi7ypQl62yQ0/VinXko64wCBX8E41XQi1/VGNsEY2x2zWKFXgiL hU6WKona5I6SdSy6/pl4pFUTWdiEbUQWul6JbHEXXuKZI9g+ivnL1zBZooHp MlKN/FXP+Cvbn+jjEerj7x77E8wxa7JgjpnMmjoJM3dvqvacpa9viCuCw2/v 6OFYawF3BYO/MVrF5aZUrgnu/uZAPv92oYY/X6yFY+X8caKE3+wp5csDgtVH 0ni5MZTLVeGMp7oznOJBU5ApncFmjMQ7MxDrRFeEA3X+luR7WhDjbEaquC2L cMPTzQo9M0PUjI1Q0RHe4eGOn7cjMUF2VGRE0FKWTV9zMX0NufQ3l9DeUEJd VgytOVGMlMWzJz+C3ZnB7C1NJDQwlEVbHERWskNBw50NFiGsNvRlxTZn5HS8 UDAOYJ1xCIs2O7Nc0wur6GrU3TOR1QsWP4sUXOIheMWNpSperDIIZ6NNOMm1 A7SOHye/boCith2EV3ZhGFmGqlc+m6weauTpqZL1jVOlxxEla+onS48d/mOe 8qj753Gv/6w+ZkrncGeIz/ApTDz9aD14maGRUSb6W3l1Xyc3+kq52p7Hg8Eq 7vQWs6skhONFgfxuTyH/eqaOP5yo4tPxHN7uTeO13kyutCZyvCKMnbl+tMW7 UBJqT6aPJVk+FtTFOFMb6SSdm03xssTPTh8nayOcLSxwtbXAzsYAXTH2a5qZ CX0Yo6qjjou3C6mxQVTGB9FSmMJQfzNdzVU0ZkWT52FMo9BNZ4ATTb5WbM/w 42BpKHsLwuhMj2SbhuBxVWeRf6LZ6p3CSiNf0ff+bHaLxzS+ErPYCjaJbCVr EICyXQKL1QSjb3NnmfiduessRK5yRVbNR3CIJ4u3+aLiEE9ESQfF7aNkVbeS UFhJcnkjATlNbHVPZ4N9GspCI3OWrhN9/7Tgkaelepg8deoTffwvqX9EH5Lz +WSk69FFzZGw+NPoWZlTOXGRHRMnGe9q5fzODq6PN3K+q5BbI9XcHSgV3JHC sboE3hf3Pxwv4eXBLM63JDBc5Mt4WRgDuSFUJ/uSHelJpJct4d52eAu29nCx JNDThggfW4K9rHF3NBdaMMbMygBtPTUSY8O5ePGoyEs+WLu7oGMl9BLgQ3p2 EgXFaZTnJFAcFUB+Uhi5OdGU50ZSnxNKeYwnpRGe5AW4EGujR7GvHe2xvvTm RODn6sACeXUWKloJf3Bgo20keoIvlqrYs0JfeIdZECu0PJDXC2C9YQhy2gEs 3OqJokkEstvcmLnKSOQyW/HzEFZo+kvntVYbhuIQU0JZ1zgDB4/TPDZOZkUd vomFuCTVstEpHXmbLBQN/Jk1fwWTpk6Wzo9L5rH+I308yVf/u/QhWXf7g3dI jv1JeENVR4+G8XOM7D7FzvYGTnZWcn24jvPdhdwcquTOjnrOdWTz/GAlr+1r 5mZPDkerYjhYnUBvfiTpkc5kxPsQGeKOq5cdFo6WWDvZinLAzMERE1tbDM2M 0TIxQk94haHofwMLE7HNFBWNbZR31PDS2y9w4MAOQiJ9sXGxpmeki67eBppr cslLiyRTUukRpCcHU5kbTU9NBt1VmdTkJpKfGk5KkCs1KRHsqC+kt6lY8LqL NEfNlxW8LqvLkg02bDITPW7izxqLIJaqu7BQxUF4hSuLNjpKGXylfqjQQoD4 WQAKkmMhm92Zp+zMaiOhGY0AZHWDMArMIam8i779Zzl24zWGDp8nMrcas+Bs tAOLkLdMYoNtFgp6/kyfu0TqI//O69Me6uNvrPl91P3zuNffy1UzpHw+jZmz p0vXpK9UXEv54EH2nrjBwd4ebg838P7eVu72lnFnqJwrXQUcqUlioiKOq73l HGnOZrA4ku7sUFozQqlODyMzwRu/YFfM3Z0xELrQdbBDR2hCw9yKbaY2bDY0 R9XIBBVjU9TMbdAwNhf5yRwNI7Fd3xBTb0+sfdyorCvBP8iZoHAPxrf3Ulic TkNFpnT9erLQQH5RitjeRY3IWTXp4XQWxtFRlsxAfTG1efG0VGWwb9cAQaHB LN2gzfz1RsxbrcOCtSYiL5mzTF3kJcEda4VONjslss0tnSXaPoI3AllrEckq o1CWafqxyjAcRZt4lqo6MXu9NetNo5E3imSFThDmwSWkN47Td+QKR++8xe6L N6nuHsUzsRR171w22KWiYJ2JsmM2q7faMGXGLCmHyEyZIe1/6TmKUx8eO5T4 yi+PkTzq/nnc6+9yx/Sp0vVUM8T9uYsWkl7fw+ELdzgr+vGtQ4N8fX4nb47V C+Yo4nRDFodr05kQ1V8US09+DG25UVSmBVMQ70VCiCshgR4EhHliJThBy94R NUsbtlnaCS1YsFHPgLXqeihqGqBiaMxmY3Grb8BmLT0265uyWc9Iqg9FDQ22 6GsQGR9IULALSYmB1OUlUii011SWRm1RkuCOejo6Khkf76a1roDq7GjB6AXU V2RTVpRJdXU+3QPtxKZkslLJEHk1O+S1nVml5c5yydzVWnPmrdDnGVkDZsrp s0IwxgrhHctUhW+I7CRvEskGmxg0nFNRtolF2yMTPY90oSsrKYPIG0UhKx63 Qt0PPc90SgePcOTFdzl04yWaB8dJq+nHOKKSTS6ZKAgOWWObKp3zWr5eh2ky swSLTBWsLlnfOO3HnCXhdmn2erL+6n+NPmRmyDBr1jTp+aNO4SnsPH2Hy4cO 8MmJIb65tJPnx9o42ZTPgep0RkqSGK5MF1ycRLHIN3lJoSQKRggOcyUozB1P P3csnF3Qc3Bmi6kF6hbCG6zsUTGxQNfOAdegQAzF7WZdQwzsRN5yd8LF1wtt Y0OUdbTYpKPNJk0NLJ1tiYgLwUvwylBvPQd2dtKWF0ttmj9tpYmkR3lSU5pM a20ObQ2FUkZvbSqjua2G+PRkUguzqWxrwjcmAYWtpqzWcGG1gR+brCPYYBrC AgmDrDNCfquduG/MGkMPVqk7MHeNEcsFjyvbpLLBOgGDoAK2OiSySNmR1Vq+ aLmlsk6wxMKNtqwSDLJKW+hDcPrSrR7idyIJzu+k9/BlwetjBGTUYp/UwBav DLQiKtgaWMI6yzgUdf2Ys2gtk6Y9JbLsJJGrZv6Ys6T+Me2JfzwKffxyjfoP 22bNnik+h6fQtHWg9dA1Lp04y1vHd/PR6Z2cG25hd0c1O9tKaCkWbJwVTVpG DCGxYbiF+OPq74lnsDf2/i6Ye7li7OKCtqU1Jk52uAT74h4SgK3Y7hzoSXhK NLWdtVS11Inf8SU5P4Xa1gpaOupo7W4mXrC3qZs96kYGFJRkMTzURnNjKX0d pVw8McZEVwUHB6sYbsqhvTieiqwwWoVGumvzBJMUUttQRHxeKk5hYXhGRKFh ZsvCNdtYsEaX+Qq6LNpkzBJVW8EVDqzScGOLdQi67vHIm/oQ1ya4uucAGu6J gtV9WGkSioKo9SZBqLkkSuev5q23En4SJvJUhvAZC55RMGa5igsrNXxYox8o mCQQZbtognNbSK0bJqqki6CCHhTt4lELKsYwthYV5wzW6gexfIMRMrMXi/0+ SXodlyk/4ZGH+erJ8fN/Vv1UFxLWkNQ0kack51PPmCU+E5mnWb5GgcKx44ye uM2LRye4JjL9UG0R9VXFtDeUiv7LIV6wrmuwPw4hQVgGBwr+9Mfc2w2/+Ejc YiJQtbRio44uOqb6pOUksPfwOGN7R8ivzCOtIElUHFllGWSX5RCRKHq7u4Yj p/dR01BMaWUO2aWp+EUHYuNsQ35+AsWFiewe76SzOY99ezu4fGKn8JEOoYcM CmK8qC9OZLC5gNHmYspEtkrJCCNO6MPY3ZvFa7YwY4ECc5cq8cyKLcyW3C5X YsFqNeat1GSVig3LlcxZvFFoRs2GFXquyBt4CI9wF9qR5C+hIVUXlm2yF1lK aMk2GpuocuJE349dvEFoWpFgCXPhPSYsXG/BasEsyoJPtjol45bSQGzlCFFl g1iEFaMgWH6d+Jmqby6b3TPZaB2NooEvS+S1xWcwk+kyT/143QzJ3NbD66M8 Ob/20ehjslQfk2bOFrlKMPlM4e+zZfDLrmTgwpvs3ntEOpfbWVlMeWk2mQXJ pGfGEJcchrPwCwNvoQm/YGwC/PFNiCJd8HJSYTpmPp6Yu9qTU5RBW0cth09M 0NHTRGd/Oyn5mSRmx5Nflo5HhK/wGTcistNpGmijqKFKZKFMMgtTKSjPID0j gp62Yk4c6ae3q5DzJ7dzeP8AFcIzGqqyyE+PpKMuk8K0MJLigulvLRE8nsKw 4JBjp3ZjYGst/EKNdTr2rFQxZsGqrUxfugE9txDMfKOYuVSROcs2MX+VGtMX b0TD2gMtJ3+UjT3Yau7FMhUz5q8xZJ68JiuUTURZskbDiXWGXtjFF9N54SZv Anfe/xUZ1S2CO0KE1iyQ2+zMsi1uyG7zwTS8Em3PbBapeWAQUISKZTwLVT1Z a5XAJtdM4SdJbLKKYYOBG3MWrxQM8vTP1vtKr4My9Yk+HoU+HpbY9zOmM3f2 FOm10bZZudJ46BbDhy/Q2dVBZU0p5bWVxGSn4h4TgltEgMgsfpj5e2EsdOAV G0FafgbtIhf1dtcTlRCCsYMFre2VvPXGdfbuG2R41yD94/3kCY1FCa+ITgii tDyL5tZqVDRV0bK1wtTXW/SnLZsNjYjJSiUkJogDB0f53W/f5cU7J7j3ylkG e6txd7fDwdmM0pxYwR4pdDdkEhflRpi/IxPDTRwRfPT7bz5n36lDKOgIjrH0 Rc8vHuNAMZ7beaFs7oyudzCV47sJLihjla4l5gGpWASkkNE6RGJdO24JmaTV 9eAYk0V4SQ2ZXT30nD1Lft8QkXmlBCSkY+cfSVr7ECc++hW3f/c1l+7d5+L9 B+SJbQZusSgZ+7NI0UY696VgEIasdhCbJcc/DMKZu9FFulZexSWfddbJbLSK Rc0uitXKukybMftn54xI9PHTazI+6v553OuX+pDM5c6YOZ2Z055m8UpZUroO id65QGPXAEV19RQ11ZNQWohjdDjWkSFYhgdh4ueFQ1gAGZVF1ApdNApuGOhr YPtoJ3WNZRSIzNTXV8vune2Mbhfc0NNM81AHESlhVAk+KK/IYvtwJ/0t1VQU ZhARFcqK9YrIKW8VOUaTzQZG6BppCL018Omn7/D11+/x8Uev4uxsypo1K0gS uau3vZTOskThbSk01WQQHWhHb0MuV07vprwsCzVDPXRdfNhqH8AWO3/U3ILR 9Y0kIK+SkPwyGnfv5cLbb5NU3YyqlRdG/nHYxQlfmjjGrms3qN4+Qd2uA5x+ /XVu/OoTLn3yAW/8v+/4jfCL977+mgMXniU0KZ+o/Cp23L7DW3/8lo/4f+y/ eofasaPElfeiZOQj9CdKsPxqvRCUHFLZKLLZcjVPwf1+rLVIZq11CmsFp2+0 ikbF2Jv5yxSl1z35a+dUSTTyqPvnca+/1McUZs+axqSnn8I+MpXSA8+T3tBH XnUTiVUthGTn4J4Uh3mQP+4JsdgKtjD2cqGhp5Xx/Tuoqi/n6Ml9nL14lKzC NMrqSrh8/RwvvnZD5KpdjO7uI7cyX/iOr8hfKVy5cozPPnqd3/7mA+6/c4dP PnmNF158Fr9QP5S1dFm+cStrt6oTGOjGzoEGXr5xkuMTXewfq2Oou5TGmmy2 i/zU1ZLDYEM6+/qrOTHRzbHdLbTXZdDXUkhClBd7D+4hMDFVMIEaciJbKZu5 YRWZgnNCFnbhCXSfOMXpd9/hxBtvoO8VyFodCzbZeFC1/xgTz98ls7mTjv2H KOzupkdsKxnYTovknPSX7nHszquUjO2k48JFxs5d48irr/Pev33HG0I3xd3D eCaXkNg4ioFXIt7JNUQILtf3ymaLayo28eXCe7OR3erJCt1g1tmmiIyVylrz WFTMBZsIjpk+a+bPPORJvvrn6+PH851mCTaf9hTLFNeTN3aGxPYDhJc24J1b gm1cGs6JaVhHRxGRlU5pc4Pg8EA84uM4eOaYyNzFBKUlcOLiKcrqG1AzMyKn tpB3f32PV4Q+KhoqCE6OwcrfHW0rQ3buHuDVl5/jlZcu89vfvselq4d4860r fPr5G+SUZbJ282YUNm/D2d8XdzcrzhwZ4uO3b/HK3Qu88vJZnn9uD6M95XRV Z9FWkcRYSwY3Luzk7OE+Tu9tZVB4yvO3LvL5lx9x/upl/GMTWbB2i+BfG7yz 89l/9w72gQEoqKhSLDJTXu8AQQXl6Ahu8M0sk2Yv38wiyvpHSSyupGX7bk6/ 8AppVQ1oWrqxQdOe9XouqNuFYeSTQu2xczz75Te8ITzlwb9+x2t/+CM7r95F 1zmYLdbBOMdWklw5SN34CcKLOlA0CpbOg1mEFWIbUSJ8xAM53RA2OWSgaJMi WF1oxMyfhbISD5GRssjDazw8md99NPqYIr1+29NTJhGcXUzu+CVc8lpxyKrE ICYDi8QMbGKTBHdE0NrfQ31PN96p6cJPUvBJipHOWel4emPs6oiekxVBSdEc OnmA5y4fp6e7joT0WHRsTQlIiRbZKop9+0cFG3zEhfMHOH5sJyeP7uDZ03u5 ffUUUREip6+XR91IG98wL3x8bbl2aQ/vvfks3333OZ99+RZnDvXSXBxFW2Uy v/3sHu/du8DH71zn1VsneO7EdvaNd5MlOKm+ow1zV3eeXiSLsqkdocWlbL/6 HO/86VtO3bmNb2QkqSWlWPgHYeofjm1oIl7ZRYKfQ9myzYC2wTF2CH/xjUtl k9DWsnU6zJPT5Bl5I5ZvtWPeWsl5VIbEVvXSeOwy/dfucvfr37Hv2gt07DlB ZEYl3gnlZLfvZ//1t4QXDbFaW3LMxJsFWzxYbx4uWGcfEUW9LNP0FtpIRtU1 m3WCQ5Qsw1i3zRKZGfOk6xcfXiPoiT7+WfXzdYgiV01+mjVKm6nafR7vqu2Y JYvxNCYH/bgsDCMTMQ+NorytiaahQfyT03CPTyYwv4Dwgiwc46Ix9PbHT/BD dUMJ/aNdVDeXMbSrj9q6PILCvQiOC8Ff8IJHsAc1jSWcPzdBieDqorJ0hkZa pfNRF8/u55VXb5JflEZMYgB+QfYcOzbKnWsHOLa3mV9/+hpf//593nn9IkN1 qeweqBK56ygTQ9XcvLiPc0cEx39xn8MHRlHesh5HLw+cAoNZpaFHbGUj9Xv3 4JEUT+v4Dm4+eIfdp48zNrELt+AQTLx9KegfJk9wuYVPEO0HD/LBb37DzrPn KRncTmR5q+AHV+RUnVmu6shmyRr4bc7IKlogq2qLSUg2jUevMHb1JRp2nRB6 eI2s1hHhvUUiS5XRe+IWBe1jWAUks05XaMEkBHXnJOxiKoR/HWKrYyKrjCLR DSxmg20868wiUdB0Zf7S9d+fTzX5Z+eEPOr+edzrZ/oQ3PGU4I6A+HQyRy5h mtWGYXweOlFZ6EUkYR+bTGFrJ1nNLTgmp6LjF4pZSCROkTF4R4fQvmuIuPxU +oZb+fa73/HRh/fo6Kni1MUDHBHZaN/BYQaFVirqS7B3t6ZroJnh0RZCI93J LUomLMyVzqY86fG+F26fISjQEQcHberrMjkwMUh2ciA1OWF89P5dfv/nD/nm q5e58+x+Du1q59blfexqz+XSoW6O7ung5tUjXL12lPikQEKi/MgsK8E1OgmT gBjC8ktR2KKGZ0AQ5+/e5PKrt7jzyvNo6+lh7ObC8Xff5vbvvqF2eCeHbtxi 4vJzOATHsdnSC6+sOlQc41ioZMWiNbqsUrVhgbwhC2QNmL3akG2i151T6tFw iMI5RnhGx37BOGUsVLFmm2MS/vldhGVWU94xRkJ5B8G5jZgGZLFU3RUtr1RU bBNYsM2TrR5pgk8ykDeNRcEgmBWK2uJzmvVQG0/08U+r6d9fC1NyvENyjb+l K1dS3CvG18odGKTWoheejFFILEF5pQwdOU5hSxu6PmHoBCaj6RtJelMH/bt3 cPDEQXYcP4pnuDdHTuzkj3zH7//wa7749Zt0txbRVpfF++8+z4GDQ9Q3FOLp bUN9fQETe3tpqMkkJc6HQ7u7OH5kkFvXj3Ph5F6SY30ZHahl51gTqSlB+Lub CO7u4A//IrTxzX0+vH+WgfpM6vMj2TNQwqHBIi4f6uT5Kwd55cVzvPfeXZ67 epzGlko8QgLYamrL4o066Dt6E5GWQXZ5Cddff5mbb9zhys2LtLc2k1RYQNPR I5z57HN2vnqPuNJGNqhZiDyljqyytfScwjV6fsI/bJmzQp2ZclrMF9lqgZwB i9eYIq/tyUJVe9boeLBalLyOJybuKSxUtMY2sg519zSS2sY5+sZHbL94ldii eixCclAQLLJaJwAl8xgWq3ug4pCAUXCZ0EcM8oahrFG3Z9YCWelnJJ3PmvJE H/+MkpGZJr2uz8xZD/e1hUcQWf1HMUuvRz82H8OAMEaPneDZe/fJbevDODgG Hf94NrsmYBmVSagYixsG+xjdfwBVa0c0rE2589JN/ixh1Pfu88Xn7/Py85eE H5zn/QcvsmO0lZGheq6L8f3B/VscPzTI2WPDXDg2wrv3rnBf8PdX//Kx0MBn 3Hr2CG+9cknkrV0kx3vT3pAp9Yavf/NAcPg+uqsSqcqN5sGrz0q549bVfZw/ NsDBna3cERr7QLze3TuXaG2tJqe0iE26pizZoIOivq3oyzJ84mKl197df/YE JU2V3HjlRQrqm1mgrIV7WhEeiQUsWKfNwlVayClZsmyjDUsVbZi7Up+lm6xY Z+AnspYbs9cYMF9ej0UKpsxSkBxzd0LLNQkNlwQ2mvizQtmGFVtd2CI59mcU iHNaDRNvfMbgqUskF9dh4puIin0U8rp+0mPtGy0jRa4SY5B3FhttYqTHSDbo B7JEXo3JP1xL/Mn6xH9KSbxDct3oWTJPM2fODKLLOgmv34ltSjl6IlMUCQb/ 8t++o6xvGIOQZDTC0tEMSBPsGI5xeCqWMSmCL13F2GeDhrs/jpER7D0mMvvn H/Ps9QscObyDV+4+y7/xr/zp//2Bzz5/m48+eIFPPnyRkcF6hvqqufrsAV68 dZLRrkrOHd/O22/cEKxxmvriZM4J7hjrreHYRB8vXDlEe0Uqr90+x6fv3KYm O4yLx0e5e/0wx/f3CB65zJ++/YDXXz5Pj/Cs0Z4aXr1znutXTlDf3kBQahb6 bsEoW7hj5BWMU2gkSQXF1HUPEJaXT1prK9rCW9apWgsdGTNvtRYLV2owZ5Ey s5ZsQ17ViSWKVsxbrsnSjRZssAhnlYEP8nrubDILEH0dJa1N1tHIiV7X88lh m30MS4TvyKm5sEzZkYWyesxepYtragNV/ftJKa4X7J6HdXg6LonFqFgGs8bA F2XrSFSd49ninCC9btBqzUBWieeZPmvBE//4Z+pDcr7sjEnS4x3K6roUDh3H K7eJkLwK9l+7zguffkLZ4BDWgs0txOeoEZbBZjEuyhsEomzrh4Z3JLIGHqI/ fLCLS8MpKQ1zL1/84sKIzowlOSeGE+f3cf/d1/nok3d4481b/Orjlzl/aju7 djQRGmJPUqIftdWZDPdWC5boorEyg7baHCqEN7RVpnN8Tx8vXz/Nqb09VGaF 8KbITod2dZAc4UpPYxbjfeVcODrM9Qt7uXXlCB+8c4uOxjyKsyM5vK+PBw9e orK5muK2Fsp7BinuHCClsoaC1g48opMFPyXjn1uEcWgU25z8WKPtwPKNJixY o4+csiWL1xoxe5GKVC8K2q4sXm/Kem13FHS9eGa9OZYRJTjntGMYUYqaSwpy mt6s1PFDySYWq7AS9NyTULMK4xkFcxasNhKeZIKxfx6FbbvIaxygvHcHSZXN lPaME5lXLzzHHUUzf7Y4JqAlPERJeMgGszjkt7oyd4Gc9PpxT/zjn1NTZk6W njc7adIknMMzSRU8GV3WLLj1Ba7df4PMtk70/MPxL6zBq6AWreAUFMUYuVLD m212QXhmVbLW1IeVmtaYBEWy0dZJ5HNzDJ09WbNNk6jMdHacOEBOcQ6p6bHs 2dPDvn3d9PWWMzpSR0VFCpk5USSnBlNfncHO4QZaa7MpyY2kr6WELqGT158/ Q0thPKMdJcJPBji2t41Ad1PaBL/Ul6Vy7tQuvv7te+wY62Sov45LZ/fQ3lhA RVG80FydYKD3Bc//nv3nTwsubmb3mRNcevMeO648R8u+wwRml6Pp4ktESQX2 celssvFmvYErz6wzZJ6i8AmjAGTX6yOzWAkzv0zWivFdydCflUo2LN/ijLJj PBtFWcZWC30lIqvhiZyoeUr2GPhnYxFawGwFE+S1fNkq+FtyHpVDTBV57bsI K2yicmiCppEJMio7qB/cQ2ZNO0pCI7Ja3mwSj9cU/KJsk4iClqfgQ6Xvjw0+ /C6RR90/j3tNmzVVuv5t4fx5xFQPE1gxSPOuw4yfuYBfdgEmoXGEFtXimlGC XXIxGr7JKJiEiB5wFXnZRWSqcDQ9Y1iwxUTwZzIFnT2kNzfjmZaJ3BZdNumY oahrgKZgE++wEOlaq+2CyY+e2kmXyFbp2RGkZoSRXxBLe3M+xblRjIvctUPC 5UPNXD+7l9sXd3N4rJ4XbxzhjVfOU5IewFi70E5NHuXp4dy+fJizp8apKUuX 8stz145SVJhInfh5bUmm4PXT9A50kCKy1N0H97ny4m1OvfwiY1evk9XQjpVv NOv0LKkZGaZ9zx7c4zORFR6y0dCH2YI1ZLc4sEHTmamLt4ltggNUbKUZack6 C2TV3Vm4xZYZi7eyROhhrXEwy7UfXrfB3K8Q64h8tH3ShN+GiHEjiOXfr3ff ZBYiPcfWJDgDn+QKIjKrCU4vpU3s++1Hz+ETkcqSTeasMQpDzTWFjRYxKOj5 ILfZGJnZc77/vrYn60v+p2v2jKlMmvwUG7apC+/YR0zNkBjP9hJSVINpTBaO 6eVEVLYJfZSzxS1cWuYhKajaBzJ7gwGbLLwxEDyyVNMex+hUuvbuo3F8Bw4J KSjo2wifsURO3VyMwQ6s1dInNDGamy89x74DQ+TnxBHo70BaSihHj4zR1lqA u4sBHS0F9HaUMi44/tbFvZza18k94SHwFfcEr+8dqOS5owPCU6Lpqkrnkwe3 uS14v014xoTIUzX1uaRnRlPbUEJzUzn9gl/c/T1Yun4bhc1dnL55DefAEOLy q4kQ2tf3CCEkI5dzd29y+/VXqGjvRtMxkNVq1iIPaTFniSqyisZMl9NhyTYn 1hv6scEqgC02wTyzTIvZS9RZJKfNnGXqzJY3ZKGynVQLKraJRFUNYhddIvxA MLeeH3M3WmERkk9gbjPrjD1ZJTLaNhuxT33jCc4soe/QaSbOX6O8uZdt5j6s ElqTsMw64xjpcyqoOTJ3kSyTp0yVrnl/1P3zuNfsmTJMmvIUZr5h5PUeoXXi HDsu3iKwqB7d8DRUvaMwj0hDyyscXa9QanbsZ/v5q9hFZbFQcKy8tiPyOq4s Efct/KOoGRgkp6UJ7+xCtrmFCEaNR8VGZGlrb5Zt1sbAwY7OgWbGt7dQlh9L hGQdofCCI/t6aa7PJjs9mMN7uqksiGNXfy3PndxOR0Ui18/v4U9/+IQHb1zn yw/v8PJze6lO9+PMRDdvvnSON1+9xGBPBdGR7sQlBJBblM74wV209beTWZSC b2Q4K1RMWLrVhKTaelJqWpm9diuxdW0MnjxDcXMDhy+f4uX3H5BYWC7G9ALx 98SwTMWIlcomLJLXFhyRiGNKvWDncPF3pbBecPmM+SrCR0yZvVyHhasNWK/j yUIlO2S3ekjXrW91iMbUJ5PFGx2ZucoAt7hy4dNDpLbsZL2RNws22qJqE4W+ ZxzOsTk0jB5k/7lrdA7vwk+MTyqC6yTPsdYwTOgjGAVNDxbLKQttzJCeX/io ++dxr+mzZJCZM4WA3CqqR8/Sc+Ac7QfOEljYgGtmKQZBIl+V1JPfKT7T6jqO 3bhJWE6F8AY35ASjqgj2WKdhz/w1WqhauNB58Aih+YVstXcXY6w7W12DxGcr 8omB5LprOhjY2TEw1MKVC7t4/cVTvHbnGGeP9tNUmUxeciBtgtPrixJpKk6m IjOGZnF/b28ZH71zhV+9/zyfPrjJF+9fF9uKeenKfj588zKfvHeTXwnNjPZX kyWyWlZOPCW1RYQkxeIXH018fgbKukbIbbNmjYkrW628sAhMRMvFD6fgSPae PM6ukwc4cesSw8ePs0bXAh3nQIqH92KbkI9RYBJLN5iw2TYMm8QqdLzTWKfj wdylWtLzcGW13Fii7CI04CCdn12sKrlvLzg/mCVbHJm+Qhddl1QMvFNRtQ7D LLJQcE4lqzXcxGO8pXrb7BDGNscwKvv3i/fyLG0DY+RXt4nMJdjIKVzkNuFn uv6s1/dDTlGbqTPnSL9z51H3z+NeU2Qms2yVHNld47QdvE5kdQfRku/VK2rC JjIFr5QcDH1CaRoeZXBiNyGpySJ7+Itx2JrFKlas03fCIiAONUsXcjq7KRoc ZbW6Aau36WLsEyJd62foF8kmc2fBsqZsNTJmdLiZt145wwdvX+dFwQr3XjhJ RUECcSHOvHTnjHQ97h7B1QfGu2ivzODSkWG++ept3nn1Wd67cZA7Z3r5/Fcv 8Kfff8S3kvrqAa8+f5qGijSRp4qJTg4mNC0UuyChAx9v9B1cWCC3UWR3cxQM 3JmvoIGlZyBVnR2YWJoRFB7M1bde5s7H71HZ1y962ZfFygYkN7aT2z+KumsY y7bYI7fVhVXqbiiZBrNYsPvsRRuZt1yLebIGUs9YoenJMqGNpcoOQh+2yKq6 i30h+GSTBZpCU0U7zuKV1YxvbpvwXQ/mrTJilZrQiJE/W51isA3PYvupqwwc OEld96CoEXJqutho7M0qHS9RAawzDGWVqiUz5i1n2uTJj7x/HveaJthDTVef sWdfprj/OL6lzTinFREt8keE8IHG7WPUbd9Oy9gIL95/g1cevIdtSDIOUbko WfniklZMZGULSVUtnLn3Ftbh0RhYOjJxQrL2+yW80nLZpGuDQ1g01kInrv4+ XL1yWGjjOd588TzxfrYMNmdTkR1NdlIgz12aoLU4hexQDyYGWxhpLuGF5w5L z4v6zeev8e5Lx3j9zmn+8IfP+PijF/n66w95/82b9Dflk5cWQmZWJHFZEUTn p2ATFIyKuSPrxOsvUtAWLKGHvODs+avV8Y1Oor67g4iYcMxMDAiICWX76dMM HT9LTGW78AQHbGNTOfnmOwyIvBNW1YNpcBbLlK1YLmq+4I3ZS1VZstaYpeus BJe4IqvpLtXGIqGNFSqOrNT2RVP4hkt8HestI9D2zkLXNRENpzgWbbDgmeV6 PLPaVDCaB5ttIoiq6OLcKw9o376X2s5+ukb2kF7WhKaD8KFtjqwxCBe6CmXF FjueWbqOaVOe8Pn/uD5E+cclcPi1XxFT0Y9HQR3qwSnEVtbw1qcf8d63f+D6 px9y4tVXGT51FreYRLZYeAhPEbxp4Up0Yw/28TloOwXgFJOKspktbb2DfPtv 39F/4iibzGyYL6uMe3QccbkFFJXmcOmsyFbCC/78r78lPkTwQpAjO3sbyE3w o7kmndL4ABLcLQi3M6JGsHt7WSIf3L/Jn777mF//+kX++IfP+fOff8+/fPMu X31xn92DDeQlBRAUYI93oD3ZlXlCj+FCGyJL2QSy1sCT5Uqih9ebSWv2sq3Y +0ZQ19VNWFQoeuqqaBloU9TaiU9KERYRuRj4pWEemUVy2yAX3/mUq1/9kfCq Lp5R0GWxYPUF8sbCG4Qm1O2EVzqxXM1deI7wGOEfC9ZJrn9iJX7miYJRKCZ+ xcI/Y5i33oaZglNmrtRnnoIJC4R/zF9jzspt7uI9+uGeUceu515k5NAZarqG RL5qJb2iRTBLDhvMAli6zUtoKUi8hhMLBYNMnTL9kffP416S7wgsGxqi+uQN 7JNK8MmvZ5NvKs5Rsdx6/VUKusYw94/HPDSdxVtMeGaNOvM26rDOxEHkL8ka CknGNmaJoh6bTFzQcvYko7KK47euU9DQIvpERXz+enimZaNuYkVrcyXnDvVz +fRO0fMv0FmZQ4yPGWGOhuSEurJvsEbow5fe6gzKor3I8DSlMd2fC+MtvPnC BeEbH/DtN2/z7Z++4MtP3+SieK6Jvmp8nI2xdDAhJiMOt5BglE0d2WIbiJK5 v8hGlqxUs2ep0IjkulazlmqyerO+eGwGDq4OKG1cj7GDHanldcILdHhmvQHb nCMw9Jd8P0GA4PQUkpoG0HAIYcbCbSxQtGCllhfeOW2C0+oFm6s+XH+1QYwF kjlfJXueWWkiMpglc9dYsNEoQrCPyFOrjZkn9/A7d5arCmYTWl2l5YGcmgdL VJxYbxZIYv0gafU9RAkeDEkvwz+lhKTKLuFBFcjrB4j85iG9FtcCOVVkZGY9 8v553GvenJn0nDtHQu9+bJOLKRuewDGthO6DRxk+coYVgr3ltlghr2KClVcE WYJN3GOSiS+vpHJklOaJY2g4+rLV0o3QnFIiCwo5cvMGAyfO4BgQJbK+Cgau gdhGp6Fp5ca+vkbCHHRJD3WnMTmE3EA74twNyPSypD0rjF2dpRTFetKQEsiw 4Il9LXmc317PyaFa7l44wK/eu80Xn97mndcucffiBMOVcVRnhmJlqYO2mQGu 4aHIqxmgqO+CorEXshpWyGlast7CGzXXGGS3OTNXTo9lipq4eHjg6e6I0pbN OAu/sRGcNWexEjOXqaJk7EJCxw6iWsfQco+Wjgtzlm/B0CNB8Fc064U+AgVH ZLdvZ/pSJeYvV2PxWlNmyRlJr8ewSsmRuYJLVmzxYINBiNCJOYtUHASvBQjO TxTaK0DDTfitdYzwuDhmrTZhqdCIjmsybkkVaLpGoG4bjLpgdxOfHHR9slF1 ShSM44aioS/L1msjM2PuI++fx73kViyn99INMgeOEyzyQ3hZM+kt3bQcPIKG 6OtVBo6Cc+M5evYSz7/7Nvc+/Zhnb97kyPnTjB7eT/3oKLmtrZx++SUO3biJ Z0ISPqlZ6LgEMl3kqtWqZshuNmKhsh6qwnPqhCaSHHUIMFenMtCK+hhH8nyM qfG3ZU99Bgd7KxgXmqiN86A2OYBTIw1cmeji/q1j7GkuYFdzHleODDBYnEBh qAP5kU7EBLlgaKyLrpEemja2KJo4ssHIS2QaP7zFGJzQ0It5bA7qbtEsU7Jm iYIhagZWBPt6EeTugLGFKQXNnajoWTN36WbkNpogs3ADW0Tu9y9swjwgnsD4 XLYauWEZk49HYgVTZ29kgYI+pt5JqFoHMUteW+hOk/lCIzMl3z0l8tei9RZs MIlGyyGZuQqmLNrihpyWj3S9oaJpNMuFp2wyj8I+qlJox45lm11ZrOKKnuAU 29hywTMegvE9kdcJZYm6L8aBBbglVgoeiWLtVgtmzVnyyPvncS/5NWsp2Xse 38ohTOLK0A/NxrekEcvoZEKLqokpqaWytZfPvvmGT//tG1795AGv33+b4V07 qOxoJK2ihPqhPk7cuIZfSjYLlfTYbOHDchVTnlmlKfKMvuBVQ5ZsMmSFogY5 kQE0xrnRnOBBV5w7p9qy6MzxpTXRi72VKYxXJHJ2uIpDnQV050dwuLuEI32l XNrZRL3wlfGqDPoK40h3MSXAQhNbI02sTHUx0NfEzt4Kt1Ax5jp6ss7Ug62O YVhFZRNc3oa6RxQLRd8vEt4hv8EYIytHPOyt8bA2xtHVRWSZAuauVGXuos2C LbRZJh47T1aLqfMUmbJwDUrCj/Rd41ln5CvNRIvWmjBnhQazV+mhZBGCql2U 4A5DlA29hS5MmSO2S76bTVbDW+RO0d+K1uI5HYXHWDBjhSGz5UT+Ep4ya5Up WyTXJ/XKYOEmkbnEYzZaxqDrmYGcjp/QUyCrJddhFPqwCMonurwbFfF6K5QF R81b/sj753GvTVs0ie89g3lGIxt80tnkmYleWC4uIvc27dxPz/7DxOYUcP7W VR78y8e89v7rvPjWa/8fe+8dFeW59v/undh7BzuoFAERkN5770V6EZDee5Ei FhQECxbELlbsLfYSu7HEHnuvMYkxienJ51wz+z3ven/nrHP+29t3ZcW17gWM w8wwc32v7/fzPPdz31y8e51Lj++x7shR7MdHoW3hhPo4Z/qMVMz9dlbO71PM C+830pwhBo7CIZb0HqpPoGSaurw4FuVFiWd4siArlBV1OWxbWMH2yUksTXRn Rao3S7KC2DQzi2uHVvHFqTYOLa1hcW4EraKhmZkRVCcEERfigr3ow9HOhJAQ L3KLsnHx98bIxRst5/GMtJNsb+4l2khmlE2QvAbR6XAr+g83wdDakRA/b3wd bLB2csHQNYiBmrYMGGhMh96j6D1sHMP13egpWukq+aljb02pZSMGj3ahj4aH cp6uYp1FxfUg/Ud7SuaJYoRZCL0Ua5COdpV8F0XPQeZ0Ex/RcohRrinXX8tH OSeln6anvEc+DNbyoFM/M0baxuKYNF15rrDPKE95v8bTa5QbAw2CGWqpmK8S iYZ9ivBUJk4JVehJJhuk60zPfkM/eP381YeRtRvxc/dhlVOHflwVGj4F6Phl 4JdZxcK2PcxetZ6Miir2nT3Jm9+/49zlMyxrXcGM+fMpqm1A396PAVq2/zqm I7WhoukgjCu8PtKGngMN0BjngraNF4P1bBgn/KFtaU9ZcRY1qcFMCrCkJsiC +jh3FsT7Mj/WkRWx9qyLd2J1vCtr80M52zabS3uXcniR+EmyL4WepmS6mJHq bo2/fLW3N8HJ3pjq6nxKqguxc3PAxFGxN0EIGnahjLQOVOYsdWNf6d3W9B1u Tg95XaNN7QnyC8DL2Rkzeyd0rN3pI37Qd4AhPfpq0rvXKLr30xEONqZ3fwN6 DNCm44BRdOmprTyeO9whAceEydiML2Kwvi9DxwrH2MfQS008StNVWMKfgeqO dFYxwy6qBB3HWHqoudBdeH2QfgjDx4XRXRheRd0Vs6ACzKMm0VvTnRGm4fQT 3SjOjXQdZs9Aiwj0/HMZbpPIIDPxqZAydL1yJLN6ideN+OD181cf49wCiW7c jVnGLLTCJ6EfVIJNXAlBeZOpbl5HeuVMimfWsffsWR59/SWrtrZRWTcH74Qs empZSG6wps8wQ/qKP/TXc6G/joNy/dl+o4VHNazQtvLCMy6NjKpaJi9aKlzi S9W82axe3EhNoB2r0oOYn+TFTB9LZgVYsTLJm00Z/mxI9mRNnBNLJnqyuiiK g3VZtIi3lLqOI1X0EGFniqeNIc4O5owP9CAxPpSouEDcA92x8gxgrGsUmk4y HMOEyT2U9asqfV3BDL0GjmOYgQ3Onv44uLpj7OzGMG1TuvTQoHMv0UEfDTr0 UKNrtxFymyZdBowRbtele4+RkmlG0nWAHt2GmjHKMgS/rHp0PcRLTPzpKvoa oOagnNPbebj0B/GOvlL/dtJ3RrvGCtMYoW4eKT3Ek96Sr3pLtuo13FU8Ioz+ uh70lvsOMgyi50gneg61ptsgKwbo+jHSPklYJZy++v9aZ1HXv5DhppH0HWj0 wevnrz7MAiIIqN2MbmI1oyJKMImvwilnCkHF00ivWygsWkLKpKlsPnKCWy9f EZObj09SBhHFNYxxHy9sYYqNXxjjMwtxT8xinF+kZOcEbKPkPoWTiS6rpuXA ATYdO8Ghy1dZsn0rize3UdtYQ0NOJIdrUlkU50BdmA1zAqxZEuFAa6IrK+Md aY13YG2yB4tjnVg+wZWF4Y6Ue1kQ7mBAqJMpgTZG2NoYE5sQgVeAJw4Bblj4 e2HsE6w8tqtpHy41HMiwcV6o6rqLzzkLD0ndChv0VDdFTd+KEYY29Bsh3KGi TWfRwHB9Z1xjcrELz5DaFEbQsGWQ5MXBui4M0LGl23B9OnQZRo+umvQaZCrM 4I6NgqcTqhli6EPPwbbK8xlDjQIZKD7QbaiT8tyHqV+2cI2DeKyTPI8J3VRM RAMWyvMgw8wC6TrYkn5DhdkGypCvQ8cFoDLSjb6DFL0mACv/ElT0FfMZYxjh mCK/IzpTM//g9fNXH3aRSfjXbmFM4mQsMmfiWjAbg/gizOOKiK2ZR/68lRQ0 NLN23yG2HT+Bz8QMjANicIxOxzY0nhmrWvns6WPOP33Cp3fuMrttOxl1C8ib vYTMGXOoaFnKqRdPWfnJbtoO7pfHOMapO7doO/wJO7cs4/ziKtaJBmZF2DBP 8tYiH1NWiFba0t1leLIxxV304kZTuB3lrkbEW2sTbKdPZrgnmaGeTIgLxcDE ADNnJ7wmKjLPRExCYjHwj0NLvEPN1Ffq1pPBY73FP1zE52yEP2zpp2pKD1VD uouX9BwwVup1DL1HWCv3qDF0jZSMHy3ZKQMdu/GSySwY7RCOY0oJjhmFBBTU YOAShapkSQWD99F0YrCRt7wnxZK9pPcLuw82CmCghpt4qS9jFXvn6PqiZhGG hnWEaMSBfuItPYaYK4diTtYQ/QC5TV6fljcWoSXETVuJtmuSMIsv3eV2NfGL oZK9BuiL7ozCURkTKHz/tz7+3cMzPpe4poPY5jTinDcbl7wGrNKmoeWdgbbb BKImNZJQNZOsyVPZcPAgxXMWojrGAdvABMlfK3j256/cf/+Oz58+4uCF80xt WU18eR1jnaSHjrWiZFYTbSeOs+HQPp599y1Pv3/H45/e8xa4cucyrVOSOFoR z4JIR2YHmrMq1J5NMc7szvIRb0lgTYKLeIg3RxZU0Ta3nOqJ/jRX5pIb4U1W rB95OUno6euhY26FZWgUZmEJGATGYSQepuMRxXBzf6lRqVPJ6wr/6CMM0mOY Bb0HjJNM4yhcLdlmqKVyvoiKpiO9JTd16aNLp95jpI8r2HysMIeW5CwdOgt7 9BlpimlEBsGT5uEYV462bQSDtOz5uI8mkaUNjLaRutW2Qc3Yj3byO8NMvPFJ rBbudsA0LA//gnnKdRF7DLGj9yBruvQbRz9db0aaTxCfi2SIbTzJM9soX7Bb uY71EIto4ZUg2g93ZKRDPOqW0ZIXI+R3/JXHPD50/fzVR1ByBdFN+7EvXIBX 2TzcCmfjmjeXoQ6JDBgXIvWWg2NiPvruoSzYeoAZrVvoNspcuSbg3s9vcPDa 52w/d468GXPRsvZiqIGL8tij6mhbXKLTWHvsLNOWr2Lhpg1cFg19/uAea3bv ory+lsjMNCrSwzg1J4fl2ZFUiz9sTPVnb2EY+8U7jldGcrQuk1WZXtw8sIZf f/2aVw8u8O2rL7h8YR/Rvg6kJIbjHSA8bmaBhq2PUhPmYRPxTC5AzzMaDYdI qVE/yUrCHlL//TTt6TPUWJjCAFU9N7Rsw6SfKzKXuXCFgTD5aHoq5h3206Xv UMXxNzsG6ngyxCgIDfMwVEc60K67Iovp023wOCXzq6hbKPlr8tajLD1zAfe4 TDSEebqJL3UeZIhXQhlWoVn4ZE7B2C+L4YbBkqOs6akizNPHCM1x4xmqH0wv LR8M/ApJnrEeE8+Jwuh2ouFAtGwmomoYyiCTCEbaJUq2ilKuBz9A0/aD189f fSQWTSdlySFsxDsyF+8gblYbY8aXM8gmkREOyWi6JWEVXSKfawrDLfwIFjZR rKWpaujKhJI6ooXj1c3dxf990LAIRkXHkf6jpEdL7x02zhWfhGzsgiJxj5xA ZEY+Jq7ejDKUehqmLfczxcnOnsuH1/Di2hHmxnuzRTxjV0Uk+5JdOJzgzql5 peyYl0NL/nhu7N/Az9/e4fDWRRxYO49ILxuszfWwd7FB29RSuW/BGI8IHGKT mLRwKS4JWei6RTHSIoiRkvHVxvmiouXEQE1nVLQVx4pClMfdugw2p4+Wm9Sb ZH01K7r0F89QHUcvNWvp+46SedzpM9qL4SYhaFqGS992FJawpvsgE1S1HVGT bPWRiiEhpTN4LL7YfOiksI+wguS6oWM9MPBMpLB5G/kLt6HjECfvkbdwu4Py uqqeqsZ0F/boPNQeA+88htskE1a2VDLZRLqoiK9Jvuo6wgtD9zxG2SahahzB YJNwBhkEoapl98Hr568+4nPKKNl4Cpvc2XgWzcMyYQZDHDIYaJXMQIs4+ptG MMopAXUrBRsq9iEbj7ZTLH31POin4y6aCBUGDkPdLFTqIUCGh+R4yS+S2bsO MqBjf+nHw/SlHoyFg03leyPl/NkBWlZSO5KrNfVpmJTJry+v8cWJHdw4vYVL OxZwfHome1Nd2CBcsmJiMKc2NLG/ZQon2mZz7+wWlhQkkhHrg6erGZZ2FmiZ 2zLCxAUthwAsx0dR1dxM0/Y92EekM1jfVfK9G0PGuCiv1+gnTK0rf9NQI8Va C8IBqkbCuqIFqffewiTd+urRvf+/jll17S0c3l+Hbn0kY/XSkp6vTw/xhf7q ipxmpTzfoe8ci8Y4P6lzA3JWr2Pr7YekzlpBSt0Kea8i6KXtgHlINikzW9Hz kL5jH62c395Vnq/PcHPRp4VyjzbP1EZUx0XjFDedcV5Z0mMcUdELRMUgDD3n TMmKcXK/YAYZhaI6Vm7X/Fsf/+4RmpxFadtnGKXOYnREJcPdshlqnyEjHXWn JOU6ZTrCj7YRqTRs3ENm4yrJxAqthKDjHMNQEx9GWoYIL3rRX+pOMX+jt2Jd A8kd/aSGBijXhrKg52ATeg02pq98r27oxWhr6eembpJZXKmqKOOLk1t5eOUI T8/v5fSaei5sbODh8XVsSfKkxlKbG0e2iH42sHlWDstK45lVFMfSpsnEx/mR UpiJs/iTmpmr5HN/4d1wjD2D8U3OwzEyi4F6zgzUdVIei1Icg+02xBh14YOB ovHuA03pLYzRSzJVj77aogENpRaU2uijTcceo0QvivlVBsrbOvXUoId87TFA dNLfUPhhLO17aDNCuN4yPEe5d46VVwxZzW1sefglFcu3MHiMM93keV2jCgkt bUIvIIPQorniTbbyfjgo57irCoMoMlwfNVe6qSvOk7jQe7AdPdWc0HJOY7Rz unhYIEMMIxk8Lkx57lDlb//4tw+38bGktBzAMHU2o2OnMjKgGDW3LOGPZPT8 8jCPKCausokln3xK866DxFQ2YBKag6HHREx9E7GNzWKYjT8qYyUziDZ07UMl h7jLZ2xB9yEmynWce4g2+olOFL2yu2R2BVcO0LKgv5al6MoJx9BYptZVcfqT Vk60NvD5mpmcbC7mzcUDPLywnXmx7swOsWdvSwmfNE9iU2MRNy59QlNtAc4O RvhPiCGipFKYIwct+wBhXV8ZHpKrFGssBEned2PgaDvpt1byGkzoOlBf+Vr6 qdvQX/p/l8FGdJL6V+xDOFhfkbv8/5UPRUMOkSWMkYzZU/ywr4YNZj5JDBhp K4wyhj6KMdCYXipGkpUU+1KFYxOaS3u5XVXXnrrtR9j5+DUZUxYweIQJ3YYa Cs8V4l/UxORVBxnrHEVX4fQBWp50HmAhXuQkmnEWXSh0bC3vnfCHhjuaTqnK /dSHip+Pks9liFk0A8U/+qn/zef/7mHh6kfygt1YZDehGVWFRmg5JtE14h2p jHRNxyq2Avv4EuIqZhNTNpPggunYRBcJK3oTmjuFlPoFuKeV4JZUxmjXcAJz KkVDM4gqn4FTTDZqwiwqkmsGScZRzInoo65Y+9xQNKMnvjIOVWGVkYb2jDIy JzwijGObm7m6oZG9dTmszgvl0ZmtfPXkLHvq89hSlcDeOaW0VmdwbPU8Zhcm 4eVlh7WvL2O9g7AKiyGhfDJWAcLkRg5KHhlp6oWpZ4zkKydhBdHDKCtUxEdU pHcrrm0aJkyiZu7PMAMPBgvD6zlGK1m+ax990ZGxklnURPu9Boyhs6o+Q838 UB3tJN4hGWyAHj0GKY4TiweJD3VTMRPej8EsMI0easb0HDRWWKKeA9//TMn8 ZcL2whpDrcU7mihq2irPKUwjHDF4rD+d+oxD3SRMuCVWtCaPN8xeuQ9u75Ee 8tVf3itv1KzixUsyGGWfzCBhfMX8nQ9dP3/1MdbCnozFe7HNX4BObDWawUWM 8S9S7nk/xCoGLa80DMNyMRmfjvH4VMLKGzHzSyK6eg5hFdMoa1pCRMEkIidN wT+3hIDCSrwy83GekIhjbKrUbBr20XmMsA4QpnRVXqs+WMtWGFkxx1V6uOSt oaMt0bES/egZ42VnSH20G/tml3N8yxw+banli+Nb+PbdNW6d3s6L28f57MAq Tu1fSW1NFtmlGaIPH/GgKPwS0/GNT6RqbhPals4MHWMjfmCDe0ym+Iiv1JqZ 9GobBmnbKXOe4liCjls047wniGaN6DXISHzFQrjYkO6ijz7CJT2EQzp2HyUZ bJxoSrKQQlfawvjyuyqj7eku91ecJ+zVz4ABwvadB5sq9/J0TSyhjzxfpz6j GT9pFgd/+4P0qtl07DKCkVb+mPgm0aW/KVomocr1g9r1NGCE+I+OayKdBij2 TnDAyDMVFX1hOuGOgWPGM8g0WvSRjr5XNsNMxyv7zIeun7/6GKlnROqCnbiU LkY3tgr1gDw05P3XdEtD1yeL4S6J2CVW4pFahX/eNJyTyxki+aVgwVpKmlfj Hp1MUYMif+2lfs1qWg8c5NSV66TmFeIVEUNQShaeE9LxV+yPEJbIGOcgemmY KWtVRRi9k6oOnQdpo2vjRlh2Ll7BPoTaGLGmIo2bh1bz7t5JXjz8jK9e3+Ln n9/w9vVdjm5bxIFN8ygvjCNuYhjB0SEUT61m8cYN+ETH4Do+FAf/IMzdvKU/ m2ATGMZIE3vJWKYM17Nj0GgL8QJtqW9LjH1jhIUj6D5oDD1U9OgrGukiDK64 1qO35K6+6vJaNYSlFOdG1CwZqmWvXJe6u/TuUeIlA0Y702WgET3FX7oIyyu8 aYj4wmjnSJwmSlbVc6OraMc7u4IDX31DYHYpH/UdQVfxn96K41aqJqIpEzr1 M5IsN4nB5uPp1FeRQV0YqO/LEOPxWMVPk9tjGeaYjKZHJqZBxWjbxyhf84eu n7/66DtkKLmLduJXvRLLjDoM4yvRCc7DNLIUs6gi9IMzGRuUimVEJjmNKwjM n4KudwIWQWnkTl+MV0IOZfOaufjoETee3uf1t1+h+Pfyq9d8duMyp29eoe3o fnadPs2c1vVMWbKK/LnNeCXl4xqTTkHjQvzScsiZXkvD6iXsvXCeRfMa2Di7 lDO7mtmzbCbXT+7i6YPL8qi/wB9vuXxyC9tb61m/rJ4NaxZRO72M/KJMJqRP xMDairCERAqrK5kyu46axloiUxLldhv0TGwwtffEPz4ZK8ljA3WMMfcLEz8M Z4SRnfiAjtSmFt1UhdcHG9JZOKKXcIoig+m5xdFPx5Y+w8RThirmm1nJ7T5o WI3HyD1WGMeRPiMM6SYcM3CUYl6VlegnAGthcsXx5XbdRxAyqYZtr79knIMv PfqMFA0aKvfVUeTOTn3Hou+WKj4bKVozlexkJ31DdKntzQj7JFT1Qxlhl4Sm QwqjXVIlE4YpM+qHrp+/+ujWp6fU/Rpi6zYSUbWAhBlLcEqpQj8gmex5S5kw tVG8o5T0Gc0EZlWQVbcYC+FzNelzgySXqwsPh+WUsOXwYd789C0vvnrOj7/8 wM+/vOPlq7vcvXeZM+ePc/zCcY6ePMrD775l4/nPRB+SE1x9Sa+dRUReMdE5 BaSUV1Db3MzC5Qt5dP8if/76kmd3znH+0Ga2LWtg17p5PH5wVnTylSjllXx9 J+M93797xZaNK1m4sIGElCiS0yeweXsbN25fkVz2nF2719A4dyYzRC/nrlzk 7K3LNK1fQ3h+MRvOnGP62jZUtcZJ7h8pGc9OOYddcW7BNaYADWt/yYSe4jET sA3LxHVCgbwPldhK1tRRrG1kG4JJQALx1bPQc/AXTY2m9yBhdmHn7qrGymtp NV3i6C4+NEDDgs3P31C/aRtdBowQftFHdWwQI0Q/HXtpCYf4YumfL0xjrjyu 1nmgueSqAPpqeKOiF4SWQxIaTsloCIOomUbRXUXjg9fPX3106tiZgNypJMxa S82iNqat2EbjlkNUtKxj5aGjrD12grL5S5myYgPW4akE5ExH0zZCeTxX1z6K cMlcNj6x6Jq6sGzjZh58+Yzr927w+vUzHj67zfHzR9myfzsL16+iauYMapoX UrZwAc6h8WiYutNtiDCuZJ0+krEGjjKQPGLC4BGjiIkN4/r147z/4SE/vX/K o3vn2dLWwtrWJslbl/n9txc8/+YGz776gh9+fsFPv37Jr7zl+5+e8fTFDb5/ /4pffvuKt+8f8eztbb764RWv3r5Setuly6cIGB+IT1QsxQ3z8MsoFC4PwMwj FH2XEPGPMcp90DXMPJRrVY91iVHu0WwVoFiH1E/+7iDGuYcLT7vK/3sJk/uS UDYNM/fx9FTVVfpPd8lkKmPdJJc501/dCRV1K7r21iJ13goO/fILNu6hwjij 0baOZpCxN5376gr3uzNa6r+3hiuq2i50G2RG35GudBdGH2gUxgjbBNFGCrqe WQwdG0gvlb/nt/+7R/uPP8YhIpX8hZtYvPkIVYvWUjBnMbsuXmb/tascvnqd +W2biJPe7pFcgK5HAj01ndBxjBOuTUbbLpih+o4MlN44WNuYxNw8th/Zy9nb V7nx5X2uyLj45SM2f3qE9LJy6cHhBGfmMD5zkvIaaw0Lb/prWqA21g7VEZL3 1fQZpDUGdW1tzM0NCA70YOb0SjauXSJ+9Ii7d69yct823n51l6dfXeXO0/NK nXz722Pe/fKIH+XrL3+84OffX/LdTw95++t9nr+/w5O393n01SPe/vw1xz7d xfhQPwIiIrDz8cI7IYno3ArcotJwjExhhL41PfqpC4+MlsxkzlBjX0bbhclr DcDQJZxo6QkR2VUEJRfiGZuDqdt45fzlTZeuib6C6NpHh4EjrFA38lJeY9tn mINyrkn3vpqo6tjQ+uwVM9Zuo1NPdfrruqBi6EY3FUO6qpgyxCycsZ7paJqH 0lvdnm7DHRhuPQGjgAJGOExEyz0dbedE5Tn8foNHfvD6+auPj9r/A1NnX+rW HWD1ieskVM9h2qoNtOzdw9azZ7jx9dfC3PtJqCyneula9N3jGCC5Sksyg0V4 Lg5RWQSmFDLGzodx9n6o6xji5OvDpsP72H/xOA2rFlGzYA4lM6aRWzOFgOx8 NBwVuV10oWvHQD0bBuhaMcjIVjnP3NY/irTKqSzetImQhGThYV3GWVoQHRtB VlYS69ct4/jR3bz/XjzjZ9HA+weij6u8eHeV73+5w/c/3xE/ecL7X56JPh7x 859P+fKnOzz77h4Pvn3AnW/u8vztY+4+u8edZw/YvG8r5XWTiUwSb5yYRWXL Gqy8Quncazjdemsor49Sk/4+xi0a+6gcHKNzmNS8kfiKWbhNyGG4qfR2XcUx shSmr9uEq+hLW3H+Z4gh/dUsGKDlKpkoTrzGW3xFi07CIdHTFrD9xZdomzpg 6BmHrmu08Lk+vYXVR1mFo+OSQKchVvLe+IkHhTBWMpd17GSsoqvRcE0RPfnS W7ioc49+H7x+/uqjfft/Mlpbn0V7TrPkwCXiJjURJHkrpnQqda2refHHr8q1 etZJvSvmruvZhzFgjBtGPon4plViFpRAQd1C6hevZMOu3VQ3zGGwzlhMHZxY tHIZh8+eZmZzC7lVk5hQkE+m8IZCC0MNHFHVFF3o2qLjFCSaCRCOdcMxLB7/ xDT8JiRh4h6MpoUzmiaWjLEwR2usHh6+HsrraBtm1fDF1ZO8//G5aOQZb3+4 x4+/3+K3P1/w5++v+PrVeX6UbPbHn1+LVkQj7x/zQLTx8IdnfPnbN/zOj/z5 5w+Stn7n5TevaF6zimlLWshrmIuZt9SkZKbR5r6iXRd03WIxC46Xvh7NGM9E tN0iMQ1OxNRvAvqOwaKJdExEU+PTipi2fCNhGbmoiQf1HmZKdzUzyVDBmIVI XYt39FLRF273Z929V0xdtUVyZiojTX0kz5nRf6gNXVSEXUbY0UNymZpVJMOt 4jCPrMQ0shizCaXycyR9NNzordhLqnPnD14/f/XRudPH9O7Rk2krt7D20+uE 5s9grE88NUvWkz1tGnffvuHYtc9Zf2CPUh9jHcPQsgklqqAev5RSLKVusoTh V+3YxfzVS6XvbyAsPZteahpEJCfRtmc3RdOmkjmpjIIZM4gumoSR5BEtp0A0 xG9URltJnzWh/ygzRtp44RSVgMN4yRj27jI8GOfsgXvIeGJTJxKZEIelixN6 ZiYYWYyjdkYFO3eu4elTxY7jv/Enz0Qfb+DPV3z1/DTfvr6m5PdfZLz95Rvu ffOIhz++4t6PX/Lyx9e8/u4JL394wQ+//8D9l0+4/dVrFm7egk1gBOY+Ufik lKNm4cNwfQcGjBxLp0E6kq+icI/PU+4Zotg7MLu6gaAMYfbMfIrq5nLq6Uum tyzGxE7YY7hi/q8lQzRs8JA8qWntR5+BRgwc7cSkjfs4/fVPxOVXC2tYi3fa 03OwlWQ6Y4ZouTBAzws1yVrDzaMxDZ+EaUQRZvFlDDUNlfs603e4Pv/s+Pf6 7f/u0alLB9q1/4gJOWVsOXOT6a3bCZLPMn9mE1MWzOfo9Us8ef+Wc/dvsOzA QfSdwyQDhDDczJeAlGLRxhzmtW7g5I3r3Hz1jKOXL7D/3GcUz5yFV2QUyQXZ VNdNJae0mAl5eTiEREpusJBhKXWhWKNTW8nCQ/VthE19pPYSJctnEp2dJ79b QHpxAZW1Nezcu43lrUtx8PFkjI01BnZ2GNtaEDzelyVL5nHxwqd88/Uj/hBG //XXZ7x+ek4Y5bow+zuevvuSW8JAN9884OFPr/n8+X2efvdKeOQuNx9/zrkr p9n6yU42HtwvTJGKa1gcxp4R9NG3w8RbalTDkH983BtD0W9gXDZF9fOZtWod s1esoa5lFWk109l46hSbjh5m/81bbDpxHDvfIPqpjUNF+KXfYCMiJzcwziuK /sNMGG7oiUv6JE5/+zMr9x1jtLXkTfMg5XVVfYZZK72kh2I9LG0vBuj4oWaX gJ5vDobhJcrrb/sOt6V7/xF83OHv9Xf/3aNzl078s90/sHHyZNvpq+y+clt6 6F4q5y5m88EDnL17jftvX0hufy6f/U107YIYbOSLrlMYvhNyKZNamTl/Mas2 b2fPiVMs27iJdVu28MXDByxY1YqTvx9JWcm0bVlHtTDI4NE69Bg4gi591FAZ okv/gaMle6tL9jBR7r+cWT2F6MwMkvILmVw/g+kNM5hUWcr6tavEL6opnlyC d5T0d093HPz80TUyxczanMBgTzZvWs2Fcwd4+/oGT++d5MnLi7z4UTTx7r6M hzx9/4LbXz/g8uMvePX+Jdcffc6pi8fYuHUDCVny3JNrSKueQWpVHRb+cfQU X9M095Be4IC+awBesRlE5ZULy5cyf8NmYatW0sqrxQPKOHnnAat2bmPutt2s P3ICn+hEhhnYMdrMgw5d1ImbMlt8ppzOQ8YycKwbHvGl7Hv4huMPHmMZILnN JQZ1q/HynNb0GGzJUMNA0YgzKrr+qNsp5jLEM9onlyEGgfQZZEaHbgOkr/29 fvu/e3Ts3In2nf7BkMHDaGzdwoFbj1i66wDbjp/kmWSrVz+948abJzz8/o1y H3AdyUWa9qHymcYwoXASHpGJwtDj0BxjzhhTOwzM7BlraELQeH/qm+Ywd2kL U2c3UFSWz6ZtG/Hw96drvyH0GqRB3yHaqKrpMXCEAT0HaUuW8hKGn0pifi5r d2ymqWU+hZOKyMhOo376ZFavmMeCJbMIiQklQvJWREY6epa2qOlqYedkJj4y iwtn93Jk92rufnGC735/wYufHvBaxt0313nx8zOe/vBUmbVe/foVzyVjXbx5 mdKaKSRJ7puxYj2Ltu8jtqQGPdcgDJ1DMfONZ2J9M7tvPmLdsTNEFZYSlVtM Tm0981vXM3XOIvJnzGZqUwuhEyeSWjFFeksLHuFJDBprzwhjdz7qNhK/1GLR 3mxUDZyVe6YkVzRJL3rE0VsPmTipFhOfOEYozikZ+Usmc2SYnjfd1Z0YNCYQ des4VI2j0XBJo5+Op2Q0Azp06vX3/gb/gdFe8lWXLu3o1qkTYam5bDhzmbz6 uaRMKufi7au8fPc1F5/c4/Wf72lYthz3pFyMA+OZsng5Tes3Yh8cjVtEKipa JvRR08XUyYuQ+FRs3DwwGKdPYkIEy5fOJz07mbrG6Rw78Slhial0VxlG74Hq dFMdQfDEbHStpW7GGDF/3XqqRFfx2RkEhgfRsHAuy9etYsf2dRw6uIlm0UB9 wxTKa8qxdHfEyN6KUWM0MTDUZPrkPF69usODWxf56s1dvv5Z+OK7u9x7dV28 4iKvf37BN79/xQ+/fsMXL25z5PRRdu3/hHnLl8vftpb06jrChSUMhX0GaJig ZiRsbhciGSuB7Bnzad17kISCIvKmzaR26SrapI/EZ+SRVFXNtKZmMsoriRXt eMWkS/93xMI7EoegJDoNMVBeRxZXXIuWbbDynGNEbg1bT95g9d7TpNfMwj+p QHmdooZTonLefd+h1vTV96avnh+Dx4WKPiJRs4yjl6YDPQZoija6yPh7f5x/ 9+jQWbH3eQc6fPQxxvYuwujnadl7gvxZ81i/bw+nr1zk0uO7vPrtO8rr63GI mci4wDhCM0vQt3MnIj2XqfOXUT2nhb2nznHq+lXuvXnNgy9fsu/ATpYtbyKn MIWm+fUU5qewqGUOG7a3oWFkINoYSMfe/TFz9cIxMITBGhq07tyJtX8AQ0Qr eiYW5JQUs2X3du4++oIr1z/jxo0LPH54g/KKXNz8HAmODmCUzjAC/d04Kozy 5ofnfPvTS6H1t8Led0Xft7nz4hpPvrnH1z99yWvJVV/+/obrT66J3yygdEq5 9PtZBCYkoGtuQ9/Bius9htFtgDZq+k5oCGcpjj+5RaezaMM2CqqnUTytgbmr NpKQU8ik+jlsPHSMtiOfsvHYCRrXbyapcib+yYWik2RGjBOusvFl/pZDFM9Z jqFrOI7hqUovmbliq3j1p1TPX8nEshkYucUzzCackbYRdB+u2LsunhGO8fTV 9UXFIFRybYjy2rOuvQfzcfuOyn3QP3T9/NVHJ9GHgtE7t2uHyrBhzBH2aNx6 jLzZS7n46Amf3bjCBWHzb/iRVdu2oOXsiY5nKMPGuaE6ypgyyRmX793h1OcX WbC8hcWrlrNlz2aePL/Jd98+/tdcrD9/4vTNiyxcMpvk1Ehals6hsr6Wvuqj 6DlgMENGj5U6MsXA2pqk4hL6a+mhb+2CprElfuGh7BedXb1yius3Liof7+H9 C+zf38ajx7eZPXsq9fVVXLl2hl//fMez9w9FIw/55qenvPz5MY+/viVavcU7 yVPf//wNd4U9rt27yu3X96maXkPB5Ep2fXaajMlVmLm4M8bSBW1zN7Qs3aUe HRlq7o2Rf6LwQi6zV7Wxfs8h/CekYucTQkpZJTtOn2VB60Z5jItcff2a2ZK5 smtmEJmez9Cxxhh7BBAk3rBg4y7KZy/GPyGPiKxJzF27gzLpKQs27adhxUaK apuUaxKN9UnBLqaULsMshDX8MAjKZYC+PwMU682Jv/QeOpYOXXuINtorx4eu n7/6UOijQ+cOdBMOUewllTWtkbIVn+CSWk75nAWcvXKJ26/u8eaX79inOC4T GoF3WiHqph7EpJWycc9uzt+7TWJpGUZOrjgFReAxPoLqaZOZUlnEisWzePz0 Kj+Ivr766SvmL51NXn4SO4/uJTIjky69Vek7TJOBGmMwcnbHPTKWgdpjGKY1 BuegECakJVJTXUDj9CLRxWV++uMtj55d5GfxAPiV79695HfRxY98Ldq4L5qQ 1/rtLR6/vs7VBxe5+egq3/z8Je//+J6nXz5m1ZplwvvlHLt8nksP7nPu9m2O 373L4j17SKuajEdiJi5xOZgo9ng29xTOmoipTwJj5OfxmfL37NwnrzERQ/HO RZu3s+/yNfacPMdJeayVwkxRExOxcHLGUTywft1G9ly/w5IdByic3khF4wIy KutILZ/Ogg27hPF3MnuNjBVtlMxswjk2G9/0KYz1TVb6R381F3S80hhkHER/ HW/lPofd+2vwcUfxjk7thM//3h/n3z06dvpYObp0ac9HH/0Dc/lsk5s2Y54y meiiKcxfsYK7T29x7dkDzty4zKTayVTNWyg6qqNs9hxSS0qplOxtHhCGT2Ka 1FA+QcIXsenZBEitOHg5Upodx9E9a3j99T3luYhDn+5h1pwp7Ny/jejsdEw8 vBipZ4a173gsPH3p0Lsf3iEhTKoqZ9uO9eza28aObSvYs2s13/74SLjioWSl h7z96RHf/v6E5z98wYvv73D/9RWe/XBLdHKHG0/Oc+bKEe4+ES5/+4JDp4+w ++h+Js+SLBWfSHppObMWLWbOipXsuvQ5R+4/IiynCPuwiRh4RKFpGyCsEIiB W7hwRBxWIYlE5ldQOXsRkan5og9Ppi5cxql7jzj9+CnPf/+NUzev0NiyQJji E0599YYbouDrv/7OoVt3WLr7MG1Hz5NXPYPYnFLmtm5l1e5j1C1ZK69hM7WL 15NSXkdM8QzRxwQGjvGg5xDFnofpqNnF0kfTU3k+vnMPFdp36KjcA10xPnT9 /NXH/62PTqKPjp0+ole/vgQXzcQhvxHbpAq849M5cfGMeMQNHn3zQr4/zaZD h5izdgPm3kGYOPlgHxRJuGTx7Cny2ecVkpBXQEx6GulVlaSVFxMxIZqkxBjO ntjFi6cXeffdK+7euszG5fO4J1yxZv8eNKxsGZ+ciqbpOLzDgiSnLeHIkT3s 2dPGtRvnlblq06pFLGuq4eefn/PL7694L/z93S9PeCUM/u63lzz//iH3f7jN sz8e8VS08+jtPR68vsvqLWvwjQjCPzqCspkzad64kYxJFbiGhApvF7NqzyeS dzbgE5uKnlsEg8wC0bYLY6y7Yo/mSLySiymYtZgWqfGChiZMPQMxcQ7AN3Ii y3bu5fM3X/NcXt/dn37grnjaA/n+xm9w/NELzj55QfPWXaz/9Ixo6QUzmleS P7WBBet3ij6OMrVpGfUt66hbKhlrxiKSKhrwTCnDKiCDLoOtGaK4ptAhib4a rvQapEuHLp1FFx/TTvKwYnzo+vmrj//Wh+SszsLpH4uHmHkEEjunDYeCuYwL mMCuEyelJ7/h4VePePfL99x+8YTk0kmo6phg4R5E44o1kq3nkl5eQVZllfTI Sgoqy6hprKdx2RL8YicQEhtH84IZrFgwmYe3LvEnP3Pg+Eb2blvF9z9+R2BM NMaujtQvbuKz6xfILsni5NkDnD17kJdP7/DtN1/yRLhhRmk6l84e5jfhia/e fMGb1zclX72Rx3jGl+8e8vLtHR6+uMKJc/tobJpGbnEm6cXZZJUXyWt1w8jB Ea+oKNIqKonJLSA6s1BGLvYBIWhZuWEcnI6Obybq1iG4TSjCOiyFlClzCU3L x8w3DO+UXIIlZwUl5GDuEsC0RStpPXScG+++5/EvP3Ly8R3WHD1AZWMTU+c0 k1Jaw4xlG9h35Q5bT3/OjlOX2PLpZ2w+do62QydpWiXesaiV6YvWUDlnBQXT FxJbVo9PShXDDP0ZYjoeNbMw+qhb07XPEOV8oPbtP/pbHx9CH8LpHaU39Rs0 mIDy2fhMXop1eDpT5i/l8bvnfPHsOt/99iNX7t7AMyISp5Boydw7WC7cXlRb S37NZCXvZpeX0Ng8T3h8Pg3zGwlJjCepMJuNO9tISY6mriqXt7894dnby+za ME8y0ytqJZcYOtqzZvsW8soKKKoo4PIN0eWTK9y7eZabV05y4thW9u9u5dXL B/zxxzve//CAp4/O8eSB1FrrHJY0TaZF/KV1xRwa5tSQlBVPhDzf4nXLqWyY iZWXJ45BwSSXlBCUkopX/ETldb36jt4Epxco98FRd41G3XMiep4x+IhvhGWV EZ1VxFDho17qOmTXLyK/oRmn4DjC0sR7dh1h2bZ9bDl+jrOPn7F88zYqp9WL f+ajpm+Onq03NS2bOXLzOQeuPGDPpdscvfmQTz67wifnPlfuNZgpTFI4fT5F M8U/iqYTXTydoLzpjHGewFDzEGXW6j5Yj07d+ir3rO3Yvt3f+eo/pY+O7f41 OrWnk4yuopN/So8y9AokY+EmfHOnMEm48ubzBzx++5Q/hCD2Hf1E6j2H+vkL efL2DUevnJOcMIcZC5ooqJpEhTDKqvWr2HVgp/L7omnVFEnWislMwzY0EEtr E44c2CAp5GvOnV7P/UcXOHDpFJ6hIUyrq2XOokZOnzksetjJrasnuHRyL0cO bubFq+vyO2/4RbT180/3+eXH+7x+fp5H989w8eJ+rlw/wuEzO1kjrLJuRyub PtnMotUtrN26gRrRR0ZJESW106icP1eYaQGpVVPRsHTFa2IalUvXML60jjHB yYxwjsXEdyJj3UJJKp6Md2g0vUaNxT+1FJfITMZJ5nIXLWVPmcPa/Sdo2bRL PHQdZyRPpRRVSZZLIKF0Ot1GGCvnXNWt3cOCjfvYfeaa6OQhe85eZcPBk7Qd PsWc5WsJSMzCPT4Hu4A07P1TGZ8zBd+syYx2imSwvif9FGvB9FMX7ujCx+0+ on27f+njb//4T+ij/f8xOnQW9hMO6aHSh+hJs8hZ2EbV/GZuv1Kce37Fm2+e 8sX965TWVhOXlMyuQ/uVx3+Lp08hLHEiOZPKmL1gLqtblzN34TzqmmbT0LKI YLmvb0wUyZMqcQkMoK46nz9+FX74+hL3rh/l+LljhMVHExkVytPXD9i/fwvH Dm/js9P7mN9Yzc7da3j6/BoP7p/i9q2DPLx/jB++vcm+HS1sb1vMY/GZL7+/ x8tv7nJZ/ObU+WMcPn6QPQd2s7x1JZMUGp1SzcSifJrWrWHWslXkVNdS0tDC 1BWrSZw8k4iqRuwScjH0ScRZce2gjS92/pEETUimv66lcIfiOloXjIRRogun CWtVUbNwFSNM7IRdUmhcu4Ug4bWhusa4RKRg5q1YU9edgrolVMxezvx1O9l7 /gabD55hxab9NLVuE73Owz8pj7GeUZKn/Bg6xhOX2CLsYwuU+54P0LCRz0KH rt1VRA/t+UiyVfu//eOD6KNDxw581KULXbu0U+6Lbujsw+TWXcxv28mVZ4+5 //Y5J899yp2HX9D2yXYCwsJYv3Mrz3/4irpFzeha2pNeVMT6LRtYt2ktU2rF e2qqqJxZK74RSnJuPsk5kllSJjJ3dgXvv7vG+1+u8vXbq9x/dZtZ82aSnZ3M jTuXuXDhUzZvXMaWTctpEH3cuX+JQwe30rpsFpcvfMKNa4d5eO8si+dV0zC9 hLOn9rFz52rqZ5SxelkTq9csoW37RtZsWSd6bZLXuZ09p05Q1lDPEuHzuaKP win1LGzbS2XzUhKr64goqWXi5FmYeEeLf8YQkFyET1w6sQXlqGhZoKppzRhr f9yisnCJziC+cArFs1ow9QpHx94XQ9cQ1Azs6SEcrVgDYrSlL300LNE098Y+ aCJZk+fStFbez5XbmTmvlcmNy4RrJmEfliFZKoZBet7KoeMUi2lQlvBQEH2G GtC5xyDxjq5K3/hYcd7jv7Txtz7+s/pQZKz2ipwleatLhw706NOHyJxypi3b xr7PPpcMdJEtu3dy4+419pw4zJyFi/j0wlnuv3nKwjXrpLdaEZmYypFTRznx +Rmq6qYQnZJIZlkJhdOmkltejL+wceXMKXz++RFevbvK85/O8v7Pm8I1j9m4 eQWz6ydz9NR+Tp48wLJ59cypr2bb9lZWr2yiZXEjN+9c5P6DCzx9eoVPj22n ef4UlrU0snHjCubOnUZxSSqTJ+ezqGUuZdUlrNq8jt2nPuXQhc84ceWqsMh6 auV1hyWn4RYeS3hBBeOLqzAXzvJKr8DEL5LRDkE4xeXgEZWBh/jAFMlOwVkV 4gmZjLUPlmyVjXdCPjZ+MZLPvPBOLMIqUJjFNpD+Gop13Yzp0l+TfqPMGKzn SNeBBhg4RxKRP42w9DJShC9Kpy0gIX8Kei6RaFgr9mv0Vq5bPcQgmFFWcRh4 ZDDMwJMeA0bRsWsPOoh3dGj3sfhHBz7+r2z1tz7+0/poJwzyER2lR3Xu0k0+ g3+ga2pFYd0KFm3cy45jZ9i8Yyd3ntxTHuedv3ghnxw9wK3n95jVspTBY8yI lro79flJnnz/isuPbzF1Xh2JWanUzJhCVW0lLetXsnn7Wp6/uMmzb67x7e+f 8/Mfn/Pjz7eYVV/BmuXzefbqLqdP72fX5jW0rmwmNW0CVpbG+Pq6cuT4J5w7 f4jjx/dwSnR04NOdbJHHW7Z0Ps1LhdFXzmPZ6gVMny2cUV/Djk+FnQ/soWlJ M4vXrxVtLCSjsoKUwlISckuFDbYQVjEds7A0PNPLcYyYiFNIApULVpNe3UBW TQOXnr7hk89vE5BRjrZ9ADbBEzHxjMRNWMTSLxE9h1D8kyfhOD6dIaMdGKnn RM/+WnRRGYP6OF+M3WIYbOSBf4o8b9VsEktnMKFwBub+ExlhGYyKrhf9ND1Q 0fZR7vGs7ZCIjkMSqhpWdO7eX3y9Ex3af0yHDh+Lfyj00e5vfXwIffw/Rpcu 8rl07oxfTDIVizawfMdhWiWb7Jd+vH7bBjJyUtm0cxNX7t1g66HDaJk4YOLg wvK2Vbz48UuevX/NsUvHKZc+XlCWQ3pBOiVVRSyVOn75+hY//HpP8tVlfuca 776/TPOCWmqritmytZVdu9Zw7uwhzl88SUV1GXbO9gwZPggDQ23JW9NY29oi GWoxh88d5Is7nyt/3nlgCzefXeP0zdNsP7KT5tZlFFaUY+pgi2ugF8vXrGTb 0cNMnT2H5JIymnfsoahuHuYBsXgm51GzdCWp1dOIK6gkbdI0Js1ZLHlsIdOb ljGxsErqu4CKlo0EZZej5xyEsXsM2lb+qGrbomsVgIaJO70G6ivXs+6uqkvP oeaMNA9R7m1gFZzKGKdwAtIqiCyarrwOzdg/kyF6PvQd6cKgMb700/ZCdaw/ o+3iGGkaQk9VbelZnf+LxcXb2/1Xrmr3N398aH106tRBeW1Ip/b/QGXYECWr F81fy9q9B4QvD9OweBHxGRNZKfnl5JVz7D5xEuegeMnoxgRHTeDo6SO8U8wj /+4F+8ULlm5YQvGUUqISo5nTWEvb+mYePjjFjz9d548/r/Pt91fYtGUla1cv Y93G1TQ1zWD3rrXcf3yVcxeOKjU2r2UB9l5uRMVHcez4PtralnHji884fHgH y5bP49nXD3nz01N5PUe4JJrJKytG3ciEsW5epAgX1SnWTpkylaScXJbt3MnC nbtwiYyTbDSB8OxSUkqKqBIWWXf2BtNXbiAmrYixFi7YBkTiPSGd2qUb2Xvp HnZhExnnFYmlbzwaxh7KDNVPw4IeqsLR/UfTfdg4+urYo+scgX9aFdZhmTjH F+I8oVB5vbl5QCq2YXnyfQpD9P3orekq/K9Y5zSKgYZBjDANVl573KFbf9FA x/8+19Huf+jib//4MPpQ6OK/R+cOdO/a/l85y9KR3LrF5MxYxPz126ia1UBk cgINSxdy580z9n92jqZ126WHOuLmH860aZOVOehXvuXtb1/z8NU99p08yISM JEoqilnQVMfSxXX88ccrfv/jAb/whFOXjtC2uZUzF46zaFE9B8UPbt+/wpFP 9xIzIZLKqVUcPnucTxTn1fdtZbvoZ9v21axuXci9h1d49/4lJyVvNdZXckIe o2ndCgzcXKha0ExuzWTC4hOYv3YddSuXUD9vPnlFFSRWVFM4ewHjk7OZtngp J+895fSjL1l39DSZk2qx9wkjb2ojS7cfYfPR89QsXI1NYDw+ScVY+01gkOii 1xADug83Eo2YM9zYHauQVPn/SQRlVjI+p4rwvCn4ppXhGJeHTXg2GnYxjLSM YoRFBMOMQ+il7aHcT1DDPolh5pGMGOcj3KFOuw6dlfpo/z94/H+Ov4/vfmB9 yOgo+apL187K/OsdnkBuw2rGZ5ZLhp9KRHo64ekp7DtzitNf3OToteuU1M0l Ka+Eippq0UE2V658yk+/f8Olq6c5e+Ws9PB52Hq5MmVGDXUza3j67KZo6BUv v7/FvdfXOXJyD2evnWBWYyWtqxaybdt6tmxrY/3mNvyCfCiryGXnng0sW7mA E2cOyvfrOHZyN8dO7GbtmkWkpEeLv4Qye1EjsakJBMVGsGj1KmrnNbLt8EH2 nDtLcfVkQhMSiS+Ufm7ngp23HzWLl3Dx6/ecuPOUjbsPsWTDLtYfPsWMZWuZ 3NgsLF1DyYyFRIinOIWlEFk4HVPPKAYMN0ZlpJnwSBTjc6eTOm0xU5Zuo3bx JqqaVjGtZT1FMxeTP7MFh5gcDLwTMfbOQt00iv46PvSXXNVHmEPXPVW5tpWm XTwDtWzp2KXnv3JUuw7/n/ro0OHv+Yn/aX38v86HKHTSpSOdOv6TLr37kFAy nYI5a0ivX0RgXqnwpQduIXGs2LCRHYf2suvkKZpWr2fj/r0cu3qJFeIvzx5f 4fK1k5y7/CmbPtkkLOCHnfT16TMnUzujlMvXT3LrwWUOCTM8eqVY1+qheMYn rG9bTnVVIfnZKdQ3TKdecllySixFRcnC5Cu5eP00V784w/2nl9m4YwWNixqY kDORjLJMyqdWUFBdylzxiq3799O2ezeHPjvDmm3bWLfnAPPWrmV8WgrZFZPZ fPIcR+8/onHlaqrrmvAOmYCn/E21i1Ywdf5SJsjfaeUehlNAPCFJhfgn5OIe nYWF+IdjaBoesbnKtVZnLNvMwrb94lu7lfMNpzevleffSrnoo7xhKY6Ss3Sc JyjXoFYMxbyRkdYxqNlOQNdT/s8tjRFm4+neV4sO7TpK/X/ER//jXMff/vG/ UR8dxUM60ENxTqT9P1FVH0le3RKmr91D4cK1jLAPoe9oa8KTc5m7dDn5Um8z Fi1i/Y42Lt+4zJUnN4UN5nL5wiFOn/qExSsWEJ2SgqmLB5Hy1c3XndySNJaL H6wTfl7YPJs9e9t4Lr7y4pv7nL54hE2bltMkTD53Ti17D27lyrVjvPrmNl88 ucSLN3e4+/gyLavnUze/nsSCNGLSJ7Bp92aOnD/ByWsXhEcusuPoQfGEtazf vZ35K5ZTM6eRuWskyz18yr6LNymtbcLBK1g8p4CE3ApSK6YyZdEykoqryZ8i WTK1GJ+YDFyFPdzDhR8C4ghMLiA8q5ysqXOZ3rKBJZsP0LhiC2WzWpghP9c2 r2H28s0U1DSRXDKT0MwaHCILMfJPY6SDZCybaHREF5oe2Qy3TUTLIY4ewwz4 uFMPpV8r5ll9/P/jH3/zx/8GfXSQ0Z7OHT+ie5ePaSe8PkzPiALxj/m7ThI/ tYUBJp6Spb0Zn5RHltRVsNR9YUUps2bVcv3Le3z62THxgTy2bl7OylXNlAgL WHj4MdLEGk1TU5x8XfEN8mB2Yz3rW5eyfPEs2tYs5OSh7Tx/epMHz69z99V1 Lt4+xYWrh/mdF8L+D3n1w11u3DnHirXN+Id64xHoSdnMKnYd20fr5jWs2rqW 83cuceXBdS7dv8aJmxfZefIIi9Ysk0x4kvMPH3H4+k22Hj8j/X4VObWNLNt7 iJ2ffc7xW3epXbKKqKxiSmcuYM6qLcIhc4nJniQZq5jorFJSy6fIbbOoX7ZO +fvFM+aRUTVT7j+f0rr5ZFfPEh2upKJ+CTmT55E9vZkJk+bilVGDrk+K9JY4 jEJLlftJjHZJRlXHjnbdetBO3usOHf4pGmn3f5wL/Fsf//v0oThX2Knjx+Ih 7ZXXUXWWrPWx9DVdCzuyJFMv3H+J4JI6hlr5McTUnaDsUiyEz629/IlKm0hd wzSefvuc1TvWEp8c+X+1d97hUdX5Gl9JD6jg2h53lVWvdxdsKyrWVdy1gIIV FhUQXKooVSEQSkgoIQVIT0jPpHdCes+kTMpMJmXSSEJ6KJGiuLb1Pvu533MC iKCyPvc+F9ebP77PmTlkkpnD73Pe9/21ISjYi/A4Davs7Rk/8X4mPPak6Mhi Zsyewaw5r7BvjxOpcWEESX7ITo/B1FzO0Jc9nPqvPro/bqD3eD1f/bObE180 M/RVO+X6HJyct/LyrFeY/PRkghI0tPR3ohE+SmpL6TrVRfuRVpoGW6ntk+OJ fppODWIc7COjXEdcRjpeYcF4R8eiyS0iU2/ALTiIZes3ce+Tf2b8vY9y1+Tn cAuN40B5Lc6BUWxy9WXbvkDcgqLwjUrFdb8Gdzm/JziGD532iBZ5snyDEwtE h+x2+rBZ/NVHO/14d8Nu5trtZvpKJ55euJWnFjjw0NsbuGfGGm578FWsr7lJ uDBXxwEt1PWBZmd1ZISPnysf385ftDyrJcKIsGIu/3bP48+wzisKv7wanGMy mSv///M37Wbh5t1MmvZX7nj0KSZMmiT38mj6Th7BI9CL1Xar8fLdw16vfeLF tvLK3Hns9fNlk8MG3LycCQnzxt7uA8ktvrS066lr0lLXXEZnt5G+oSZ6P1XW oRg5/XU7R040Udeio0KyTaGxhOjsJPKrtZi6m2ntNzFwpoNP/jlIv7K36Ofd tH3WQ9sXg7ScOYqhpx23AH9c/aT97nZmd1AIWUYTnrFJrJf2PVO0cPlWN+as 3Mw7H27DyS+UlGId0Rn5kvWDiT1YQHBMCnuDItnpvZ+dPoHs9AwQHtxZvE6Z O7+J9+U6LLd34cMdPry3dS9vrtnO66t2MGOFI9NX7ODJ+RuZOH01dzz8OmOu Gy88SOZQNNtC8VTKvmTm6lyri/t2R/LHz4mPi/yWoimiI7Y24rWsLJn055dY 6e6Lt7SXuLJ6ApKziSssY39qDps9A3l94VJmzp1D4oFkuo/1kpJ9ABfRlA32 awmOCMQryAefIA/S85OoP2xk8JNOSqszMdSX0NFjRFeTTfOhGjq6G+gZaGJg qJHjZ1qFjUaMdQWY2vT0nTlM7xed9H3ey6GjLRweamHw750c+byd7pMmmgcN 9H3dS9cX/ZiOtwkbreTrK4nPzkTb1EhxczPlnd3oBo5R1NFPTJGe7X4afOKz cIs4wL6YLHZLjnAPS0JzMJ/l6xxwUsYN/YLZ5O4p2hLFmp2uLLVzVOcbrt62 h6Xrd7Fg1VaWbXBm2WZ3Ftq78fY6Z15duV2tqYs384B4rLsencW1N0oet7DB Qlk3q64N/C4TP8THiH5ceT6+09d7PpNIHrE2l0xips7Zmvz8NJYoc2E99qtt xTUwmLCD6SQVVxCemsnCD1YRlRRPQXkhh3rbyCnNJkRyiIeHO/6BvuSX5tB+ rJWuM+30fdbC0Nedkr2rRRuKaGwrpf+46IGwk5kVR0ZaCPrqg9Qasqiqzqay Np/WIzUMiN8a+Ez4EXY+lmwy+JmwcaqF1gEjPSfbOKzM6+1tQGssJ1c0Jqe6 DEO35JfTQzR/8rHUKQxHj9H86ZdkGJtw9BRN2+PLzv0xhGcLS9oGvGKz8IxM FS7CiMouJl70xDc5A7+UDFzC43HRHMA1JIVte8PY6OQrHs2ZxXbOLBAu3ly7 nZeWbuTF9zbzjOjGfc8v5Lb7p3LdjXdiZTFa+LBQ5x6aXTQ+/kP9VkqZmY3s X/Jz5GPYb5mp60WU/XvNrUfx5Isvqvts2nsEsCdIg1e4Rvx5ON4R0ezXhAsT hZRWlUqbN1LX1Uh9TyOVjTVU6HVUNVaq80JaB+voOGqgrbdC/FQlH59spG9Q T6OphHTJIgEhe4lOCaC+sQBjfQENLaUcPlFP26kajn3TRu/pRvk9BskftXQc N4mW1NMlnqzMkE9ZUxlFDeVEZSVilDzS++Vxej4fovOzY3R+OUSbskfkyeO0 nDyB/uhRqgaPklBexYKNDiRqawhLysTRTXjxCScis4SStj5SKhuEGwPReToC k/MJSC1mb+RBHDzDsNvlw/v2rvxNGHl7zQ5mrnLi+XfX8fisNdz13CJuffBl xt18t9xrRotuWAyX5aiznurHM/mF4+lXuv380kvNg5bm3+Hhsj5LXXNormYR Jbfb2oxS+1wmTZnCRy772BUYrvrxfaGRwkqI5I79RCTEUNOgp6quCv2hOlqG 2mg/0cah/ka6RB+OfNpBh/Bh6ijD1KIVBoqpM+Zi0Gei1+eTnZVAVb2Wvk/b aO7Ukp4VjlayectADT2iG71fHqLtZLNwUEJWaRr6tgpq2spEW+qpaCqm/VQn vV8fo/3vffT98zj9/3VEXtNPt+SR7s8GOXTsMIeO93Ho1DFMZ05gPH0K49DH ZNXW4xISwUp7RzyDo4hILyCtqpGkinqiCmsIySzFRbyXb1w2Tr5RbHDdj51r AO9+6Mhrizfw2rLNvLpiGy8s2ciTc+yY+OIq9bsDb7rzYbmW1wgTlup+JMq8 QwtLpX/Q7Ae91Agf/058fFsWkkWUzG5pZs7v//gAizdKNnUSv+XqgWtQhGhJ NNGpKcSkJIqOFFFZr+fQwCF6hjroOtZC52C9ZG8T3UMNDIgXau+to7m9Bp2+ AG15tuR0A1WSv4tK02nt0pGvjRSvFU5G8QE0SUFUtRaLDrTR+Y8eanr1VLaW UN1aSqfkkCNf99Ev2aP/H/30SnV/JfVlL33/GJA6wuHP+9W9sFp6O2g62k3r 6aO0fDKEYbCXio4OKts7ic8rJqOmgZLWXvIbOkkqrSUip5zQzDL8kvPwTMjG LfKAZPgY3l7pyKQX5vDA1Hk8O/dDHn9zFX9aZM/j727kgdnrueuZhdwwfpJc 56uFh6vO64UyFq7U5bRjJJ//O/KhzIs352pra6zMLLnh1t8xff4i1omW7PQL xy8+ndT8YhIyMknNzaWoqhytoRxTt4nOo22iGw209RjEL+kwtdbQ2dVAe4f4 sOZKDKZy2uRxTm4yXt67KKnOormnUjK7jpL6Igqbimg4Jhnjq076vxmgWxjo +0aY+KybfsntPZ90iL500yHHZtGrLtGPXtGMzk976DjdS/PxLkxH22mXx52f DNL2cR8NA11UdXVR0tSKrr1Lqpuc2gbSKw3EF1YRlqbFP6kQn8R8/JOL8IrL xSs+j4/cI/jLvI94+LX3mLrMgdl2Hjy3dDuPzt/EvTPXcPtTsxh7yx9EL66W ay453MpS1Y+fwsQIH1eGj3N1ada4PB/nykbyyNWjrSVjSjYZN45ps95i6779 7IlIITQlm6ScIjyCQwiKiiCnvIS8ynLKjVUYWgzUteoxiP/SGysxNRmkJHe0 1so5nbqvqK6yiNBQH/J12TQOiN6c6KD7E2n/X/Qw8I3SNyUcfNVNl2hFz5dd 4sM66TrZyuGThySbd9Imfq5VXtN5po+OU8LFkQ7qelowdkmGH1JYGUTf1Sra YxLu6iisa6SwvpnMmnoSSiqJyStBk1FAYGIOXpIxfGNy8U8owjsmj73h6ezT ZLLWJYxVruEsdwln5sZ9/GWZI5PnbOC+Ge8zfvJ0bK6/VV2jqd5TFC+l9Oeq 9f2MXOijLp67OzJ/98rwMawhP00/rM8eLUVDLCSL2Niaq3tpmVvb8IdJj7J0 vSNuwbG4i393cPdgncNWQuKSiM/MJzIlVXySsq+CjtzSEuIPJFNcUUJZlRa9 QYehtoK09ETKa7SEaAIprpVM/mkfh4fa6RiS9v+xwkAz3WfaJEt0c1jRC2Gi 76Twc7qdrtMdap9vyxHh4HgH9QOt6A+bqOloQt/ZQm3XIWraW6hoNgkPRgrq 6ikSNvKEiwydgbjCciKySwhJycMv5iAe4Sm4h8SzP1GexxUKGxm4hx5km3c8 a51DWb4jgHccPHnu/a089NZq7n5xETdOeBqbMTdgbaGMsyr7VY5S1/ifa+ff 8VYXMTHCx5Wt83225/lQtMPqMnUxL+aXaokwoo4jWo7i5ltu5sXZc0RL/HAN iWH2B3Y88uKbOHoG4x0ZK+0ugaj0XNGXPJJy80gvKSItL52iskKMTUaKygsI i44kMTNd7u9G2o600zbQLCX+7HgrrYNK35fSd9VIU4+JhsONNHTVY+qpo6mv UY7NohMmdKJHpSYDxQ21lDTWo21spKTBRL6xjix9DQcrqyRnGMRH1ZKpM5KQ L2wcLCAgPhNP0cA9IYl4R6UTnFKofpepS3AyrsGJbPKKYolTIO9s8WGW/R5e WLGdB15bwfhHXmXcbRPVNU7q+j/RZQsr87Nlpuqs0m91bi9dtf6F/quR8Y8r ycfwdf+f8qHue312b3grKyW/W3P3pIeYt2o9i7bulvazkAdfW8Jad3+cgzTq WJuXJpYY8WBJBcWk5GSSV1ZMRV0llY3VxB9MxT8inILKUuo6TBgO11PTWUud cFDXXU9Dr4naTiM1wo+u2YCuqVqO1ZSZqihtqBFNqCJHryO7WkdGlU4YqCS1 TLSprIrMaj3pVTUkFJcTk68lvkgnmVxHZKaWgIQsYVh0QxknDE/DJzYHn7h8 dvgnCO8a7PaE8q6DN6/YufOs3S6eWOLAfS+9z28mPsfo68ara2Ntz87PsZB8 NtyXa66OIZmrnFiqXAwfzTG7TN/VCB9Xho9v639HP76775wF1yjey2IUlmPH cf9fnuWNFZt4bslGnl6wUhjxxT0sVjiJxlvu1ZHK2FteIcn5hWSWa0kvlccF 4vcjo/AJDSOvqgxdWx3alhq5/1dTKlmlTJioEDbKmo1yTi881JBbU0FWVTkZ lcJBRRkpZaXEFRWLZyomoaiU2AKFBeV70XQkaSuJytUSKnoRckA0I0E4iM0i ILFAvFQh3rH5OIeksyskAwe/VDZ5xvGRaxjzNnny8ocuPLvamYcXOfC7Z+Zx rbLHutwPrCx/ha31VcLHVVgrXFhbqVxYKHtLq/nD7LxuKHwo68r/FT4u9FpX uv380utSPi7Hxk/nQy1lLFHZ49dG2aPmKq678QYmv/ASU95ZyvT317PJT8Oe 6CzcY3LwTs4j6ECOeP4cycT5RGfnEiu8hKdnsS9CIx4ngvhc8V+iLbnCQY5B fJHCQXW5PK8m11gjeqAjWVsqGlFOclkZccXCgraCGNEIZR5ilOTtUMnb+1Nz CUjKxj8xg/3JOQSlFOAVk8meiDTcwg/K41z2arJx8E1io0c89l7JrPNIYoVk jbc3ujNlqSOT5m5g4ivvcfPEJ7Eee72avWzO7rmnPLY6n+fML/BXw3UhH+YX 7d0zoh9Xvr5fPy5Xl+Pj7JzG823EQv0eHksll9iYMVpKubeaWVzFuN/eyoQn nuaZOX/jbw5ubAmKwyUqg33xOfimFuCZmIl3XAqemgS8o+PZHRKKX3wCoamp xOVJZtGKtoguJGi1xJYUEisZP660TDjQEp1fQqzoRHRRCeG5BVJFhGYXEJyR h39yJh6xqbhHJkpJ5o5Kk+fipeJy8IjOxiUsg52BaWzxThSdiGTZdg2LnTQs dY5ivmMQL63czcNvreOOKbMZ9/vJWF//GyxUf/or+YyjRC+s1LUzluev6bdz cy6s821dYUQdI7woj1he2p91oYZc6fbzS6+fOj/x+/uzvo+Py/QJix+3sREt Uuaqii+3FT2545FHmPrOQhbZ7xQPE4NbZBq7I5KEiQS2+0fhGBDJVv8wuZdL ro9Nxj8hFZ/4eAJTJTNn5BIi+T44SzQgPZvg9ByCUzMIU87L84CUDPwS0/CM ScUlMp0d4ak4hSbJMQUXqb2aA7hpDrIzOI2tfims3RvDey6RzN8ezqwtoczY HMcrDlLrA3j87XX8x59e54Y7J2Ez9ibxTxaMFt6tz332H7kOF+vHJd7JYoSP n1NdKT4sFZ9mbavm9tEKK+LRLcSrW10zhhtuv5PJz05n5rKVLN3mzIeewazx 1vCRTzR2PlFslMf2cs4pQHJ9eDTOkUlSaeyISmFHRBxOwZFsD9SwY78GR79w tgdF4hQYzVYfDZu9I9jiH8+2wBS2BSXhECjlH8MWr0jJQREs2xXBAtGKV7eF 8dKWMP68IYwn7KRWe3Pv7I/4zUPTuPaW/8Rm9FjRQEvVN9qqrJuf7+f+seug 6saFnFie1Y7zfJh/hw2zH+zPGuHjl8yHjboftvgPZazEVvFcoxhtO5xRlD4e M2Wdya+v45YJE3hw2ktMW7RM/L4Ty138Wb0vjBV7w1jjE8kqn3BW+EaxWtr8 B77RLPcMZZV3OOv3x2An7X6N8LBWmFrtHcWKfZF8sDdKreXukSzeHcoSlzCW uGpY4BrNXOdoXnOIYKp9KE+t9eHRJTu4d9YKbp3yBjdMeBCr627CXJi2tZT3 Kl7KRl17bIWZ1CgbS9U//uh1sB5eY3Yuoyt1buxDKVUfzvKhjq1bWw1zMjK/ /f8BH+bfKaXPU5kjb2E7XFZqjreS+7ClcHLuO3Ut1DE1Ze637ZjR/Pq3t3H7 Q48xaerLklcW8crKDbyxZTezt3vzpmswM92CeXV3IDPdw5jnHcc8jxje2hPD At805vscYO6+FGa7JzHdOZFpuxKYtj2a54WHZzcHMmWdB48tceS+11dw+9N/ 5fp7n+Ca8b/Hduy44fWTFr9S5yor37NlazO8RszWanhejZWwrdaF2evcZ72Y j7P6cT6DWA6Xqi0qJ2f1ROHDajiPnPuZEf34v6/z/Uvn+5ksL18Xv+ZfqUt+ h8UlP2NzVj/OlbJ/o1KjR9uoRxuljVkOrzmxGWPNmF9fy9jbfsdN9/yR8Y9P 4Y7nZnDXjNnc8+YiJs17nwfnf8BD767loaX2/HHRBu5fuJ67561mwuwV/OGN Zdw+9S1ufHwaY+95jDHjJ2Jz42+xGj1GXf+ltG0bda2k1fDfHm11yfs7V+fe v9LGf/wzWlwyf+f71w/88PmL60q3n59a/w0GLOAq "], {{0, 113.}, {200., 0}}, { 0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag[ "Byte", ColorSpace -> "RGB", Interleaving -> True, Magnification -> Automatic], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{200., 113.}, PlotRange->{{0, 200.}, {0, 113.}}]\), \!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzkvGWUXUeWNejp+dZMV09Nf9VfVbvKtihTmUpQZoohmZmZlEoxgyWZ7TLb Msgsg5iZmRlTnCBmZrTIFpzZ+0Tc957cvdbM//Fa2xHv8o179tnnnIiUV5eB eT3+5bnnnhvyr/hfXufXYwcP7vxm/l/wo3DAkN49B3Tvljrgle49uw9u3+V/ x8ZBwHbgfwBNYnLFLyZPmsTlia8iVwLi8g3i8yUwvkCaJhRoGxBXKH4JRL74 cXtcgfijbRJfiPML0S+SoMQiaZFSIq3TS6VNRqm0zyyT8GyDMCAit0yicssl Jr+DxBd0kISiCkks7iiJRUBhhURje3hOKY4vfea8UPxun2XaMOzn+cklHSWj QyfJqewueZ17SH6X7lLQFa2iO353U+QRnbtLdscukt6hiySWdMJzlEtbPB+f NSS5QIKTCvU9gxILJYhtAt+7UAITCrUlgvCeHIdAvHdTjocF+4EcgwTzm/vN uBXqeARbNE8ukpa4X8vUEmmVVgoUu9A6jduKpE16kbTLKMa4lbgQmVMiqSUd JKdjpRR36Sxd+3aVvoN7SP8h3WXQ6z3krXf7yIcf9ZOPPuknn3zWVz79rI98 9nlf+eyLvvLx0D7y1j97y6BXu0ufQV2ksleFlPUol3K0Rd06SHZFGa5dKinF pZJUWCoJBSX4LiX4FqWSXFwuKSXlaMskqahEkthie2x+scTkFklkdqGEZxbi eQukVWo+xjJPWiTlSfPEPNhGLsYhF2OQI8EJuRi7bPzORsvf2dI8KVdap+RL KM4Nzy6RiOxiic4twXXLcP0yicnDN85Di23ReP/YPCDftNzGMYnILpLwLDxH VqFE4/yYnCKgAMcUSxwQm1co8fmmH4V9kTmFOLfYAL+j7bbwrHy8Rz6uV6DX DM0olPbpBdI2PV8aReYCOeIVlQvkiHd0ljRG2zgqW7yxzzsafXCIPPKJzkM/ HwCPYvOBPGzLF5+YAtvmq33QxpolFUtz/eYl0hZoB1sk2mfBvrPwfhiHOHAi tayzIs22yaWdJaG4k8QVdsT4VOC4cokAHyJyypQ3PDcMHInG9rj8cnzHDvhm FZKKczLLOoEDnSW7sis401VyiU5O2015RH4k4L7kB/nWNrMUKFObVT+gviBf 0QQ+whfwg98IjCXyXb7DH78DANNiG8bHP46/3ccYH2M4Q24FgS8hSUU6Ns2S i2FPAO7LlvdvmVoEOysCV4qlDbjSOp28KVJfEV9YLkkFZZIGG80pL5f8juVS 0qVCKnpVSs+BXcGVrjLg1W7yypvd5Y23e8ib7/TUdhC29RnQVXr27yLd+nSS yp4V0rFnRynp2lHyKsolrahYEvJL1N6jsoolLLMIKFDQ9ml74VnoZxmbaZOc J22ScqQNuNASfWP7OYrA2Gzxj8kWvyjYUGSmokmU2RYQkwPOENkSDK40S8yV Fsk5ilapedKaSMO10/L1PmGWd21pp9jGfii20WbbEGkFek7LlFzdz+d2OBZX UAr7KQPPOW5APn4D/J3IcSymT+4AP9lB4uADogvIyVLlZBjGoF1GoYL3bhSe A2RLo4gcRcPIbAAttjXUbdiHbV6R7INDkXlAruWTgTd5E0XOQE+gLSHgR4tU 6Eem8fnhVjfIiSjYdCzsOR6akVzWBf6/i2TCr2dWEIYnSfDvcQUd8cwdJCqP 55Wac3NL1bckl1RKenlnycI52R07SV6nzlIA+y+GZpR07y7FPbpJSY/uUt6z p3To1UPKevWU4u7QlM7dJA3nxeH+5FwouNYmo1jtkr49OMHqg3LD8Qdo6R/Q D4Bf8Lfc8CMfoqm9Ofj+2M5j4vJVh5UzPC7Gcgpg62hxMDhChFgEY7z4u1ky xk01hihW39JSOVSkPAnNML4zLr9EvzX9OX17Gnx8docK1YLcDuWSB+TA9nM6 QnM6lElmKbWhRH1sBOwoHLbfHjbG70/bpC9vBlsPge8PsTbfVG0+S205BP4+ OCEL35X9HGmO380S3JygLgSwdfrkQyz34Tqx1IxcnGe5BKh+JIIbSeRIrtq4 ww3aehvyUDmQL62gMa1TC3RbW3CkNbZRd8jNFsl89jxwzfLMcqV9GnXJaBNb 5RffGTyn3YdBcyLoCzAe7dHnOPD+LVPz9DrNgWb2XRuEZ0n9sCy02dLAabGt ofazlD/kieGL5VGk5Q36yptowxHqB22E9kUNoV9sk1GmHAmj/88uVT2IzKPd l6ud0pcnFFeCz5WSVNoJnK5UXYnOM3FWmMZX5Dg0oqwSXOgiZbD1cth/Rc8e 0rFPD+nUr4dU9u0hnfv1km4De0nPwb2l9yt9pfeQftJrcD/p2r83uNJDz02D xvCevD850g7awTiQdhgC26T9GvvPAT+op9BR6ir43wTb/DQeJV9yxFf352jf n63ljXIn1vCpaayJQw3vTCzG2C1YNbZIEZJYZHXFA8nUGMuhROoOOJTIczG2 sDXaXFA8bC6RNkI7ytMYpxVsqVUy/SpsKJU+lvaEfbCRFqnGBohWdj/PZxzk D9/uF2vsmlpIGw+CrbeAnw9Nz5MoxB5xiEtiEX/EwKZigWj48yiNbQC2/A37 C4e9hZJ7jFsT8pQ7fhjHgGiHN06claM2GAL7bp6UrXxxvQf1KcnEay3wfmyV n3ieYOVutmnjjC4pb6FrzXFMa9g3uRHBZ6Sm5BS7tCSxqExSSjsoUssq0FbA zyDOL6Q9Iu7PM3Fbe7wLx4nceBaZ2tYjPxyQGx5oZPnibG8ArtSPsP1Is582 RXuhPTjft0VKId69UGOHNmnQL/iyUPo0cIf2GkmtYJtLTiAmS2dsVuQ6vn0m Y0fEw8hbMksrJbeCutFZCrt0gXZ0VQ507G15MqAPuAIM6Ku/K3r3RC7SVTLK u0C7KvV+jNPIj7aWH+R0oIc+PMsPoyF+8AG+4IoPfvsw/gR8sN83MgvbsxFP WL4w9qJ+4HjlhyvmAkegJeRNUJyF09fcBeeQA/QxyOmoaaovTl7EsWRsBq1p jjFtmVKocX9zcEI1QHUA/jrZ2B19dRD9fyKRowgCmBcEWF74x+YqVAvx7IF4 9xDwJgy2Hoe4KzGvCGNeilgM8RjillT009Gmwd5SAbZp2JZaUCxJiPVjYF+t qUPKNYwN4i3vcMRbEZkYs0wdKz/LFcPHLKM9saYlL524LRjPGAI/EAJ/EEwu xFtoP1fBY1sm56u2tEsxzx2L/CQB8VJiAewFOW5aKXLV8grJhM5mIY/Lqeyk yEY/HTxJRS6bXAJ/DduKgT1Gqv0VunhRz4MX9ULRB+rZfQ2sljja4nCmPrUH qAdu1Ivw0B5yiHYTY+KMYHxX+sRWyYhn0kvVLqOgD3FFnTRXTkWclQq7ZeyT hn4Kc5CiSolFjBWTj1gIx4Zld8DzlsOvFKstt041vGH+GoGcJhb2Hg89SsRY MP5KhRZRK9Jw3XQgw14/obij3jsU57RLNzkyn83YJnKNWPLCxJPeNicj3xvj fZqAF96RRjMNL9xoDL/gA36QI75WUzy1xKUpse74K8DJaSyP2Pd37TdtoIf2 BDq5nSsGM/lKq1QnxzexWDNwphn0gbFHcLJBEPxuIOzID/bYJIbPyjwT3wr2 2iDCoGEEc4Ys7MtUrjj5gomfjO3Slh17dvr6G/CPJvD+vFZoujQKy5DGsCtv e13ypAmBY/wdfsRY4Hq8H+/V1PIgyJMPjOVisu29jQYFx+cZH5Gcb/wneMG4 KSbX5BwJ4GxCvuEI845k6ERyUbmCdYhY5v55pjbQDvkMNZV5EflJNI3NcumA E195aonDj0ZhWc/oBfMRxlpeGl/Bhhhf0Xai8jR3Jy/8+F0TTE6qMbfGEIXq 9/g92+Bbtk1nLlSieYDm7OBNRHaJcjcczxyKdw3NZI7AehiQVmry2BSTM7RO h/4gdovMMXkKc5voAuY3HcCtCuVLPPJ8J4bTnB/+ISK3QmM+1oyasW6lvED+ hOduDH7wHcgN5UekeS9qh3nHXOVH42jqCbQk2uxrEm1iLn571gOpM7rNxmIO P5pYzjgxGo/xjc6318jT6/lgm9ZIot1ca+LBOfr6gNhc1RramL/1w/7Mj639 +8JWmSezpb37RGdKI7QNlA8Z+NZAOAFfiLY+t8GOvbDfO5JtFnxDpjnX2jZt 3IF3hLvvA3toDL/ohW1euJ4XrtfI4Rt+q3bgmCZElGn9omw/Ots1buQMc3m1 /ziDAM3vuD1L4WeP8Y8xnKHOMS5jPsL8o01qviu2ioT9aHyF+I9xIWtfzNO1 FpZjamBhamOFJt9PgR/H9Ri/Ul/9wZGXoBOEakZYpurIS2Hu3/UdbljNYN7R 0Oby9KWN1Y74LfFdY1n3NXXhpglOvcbJPZEDp5jaDGu/5EZb2LzyJI11gzKN syKRf8fChpnDM+egnbONYi0Lfl/zl1yTv0TjuGjoS7RuNzVh1sfIOdbK2tqa WduMYrsNvEwntwDEKNQ15ttN1B4tH9T+c138UM6TBzEF4s3ana3X+bEWEVOo 9Sp/a7PG9+fafQWmbk6bZh6vrUET2zIuU65xLOlvbGzaUH/D9gDfSMYnOUaX IrM9dClHOeIJbiM39B5qh9aWYa9e4EPD8HR83wzDh7B0/c4vtk83sUM49wMR 1BQLqzG8LzngjW2NorKUZ9SdRpGZehw519BqUH3yLsy0DcN4X6MjvL93KPQk 1GiKD/jkC/joe5rYy1frXVka4zmxl3+MOw5jvk/uaL5PXtgcirbdNr1Q83nm 9aGsZWWamm8sYqy4POoI61llpjaNGFDrw4jXQ6E77cCpdqmmFhCisW2e3ofj 91L7DHkRz/wiWsOVLHkRXHjJxlkO6ofauMp+Py+nJsxYg36PcyHgQhC40JK1 q4xyaZuFOCanArk57Jv1qGLkxiWdJRHxUzzin/hS008CUhhj2TYF+5irx8Lf R+V3MLVd5OicS2mvcyrkU6mJkbCtXUaZxm2cW2gOu2+ebLSKcVNzJ79NNLF8 0zgT4zCmod15R+TY2NHGhaqPOa74irynvTchYkzfn3M9sYXaBijccZHGUnps vvKiida48vVcrXGpDedq38dqEvezPu5osG90gdUSoy2+2jf5nKs2hvcIirN5 is1XlOucv4q2tTXLKz+8i5+1ca27wp/TvzeIJFfSVTto6z6Rpi7L2IuxYmO7 TWOxiCyNk2jXjTWXIO+gF7D1hqpD4FkoOceWNmU40sjGWdQV7zCDxmGGG4oI w+MmjM1sHTjQzp0EOtznPEqcsVnWw5ira00L+XPbtDzEyQWwg0LYg50PySnS Gh/nbNKKkTOVdJD0UuYYiLOKSnUfc/Yo5r44PpT8Sja1K/KOXCRXyWfavuEG eBGaLS+gfQE28mIYtQU5Btp6odlWT0y+4aplRRlu0Kfq/CDzW9om58DSyqRl OmIY2C5tOBT2HQoNCM/tKOE5HXT+gXOBrFXFIidgLSsOcVE0dSGnHHGW0RTm F9QYxmROzK212MQCM39p82BTa811+XLNkbUOk6f2oj6X9opn9oG9+EQwZ8hT 361xYkS25hiE1nWjTD7B85hTe+YM/nEFlhcAeRJrtMI/xuQZTTQey9eat3JM bd7qVLTRXNq/T5TDj4Jn+ME+r+frEed5q4bZuVzyxonPyAHGYVGmnsbrs+9j n9+Ldk57j7axDHMP2/dFv3Es57dwfKyHHsUZLSJ4jE9Mtku/aM8+ThtheKIg 54iwTMMF2IiX5QN5pTEWdSMs06Uf2lcNMdpB+Nkcxt/mJUYzkBPEmjy9ZZKZ KyEnOD8TpfUp2Hsu54ypEZzT7CA5FZVS0KmLFCAHz6/sosjDtqwKzg1UIjft CH9cqTlJYlEHzVnCMou1fkR+qI+IzFK9rdfe6MZL7cGJ9lnKjRfxfvXCyI8c C3cN2NSnmHfkaaxB3+oXj+smEkUSCJ/dFH68KfLxIPpz8KUVuZJZLm3o77Mq wPVyE09x/i+XGlGu9dzQ7BJT08V+agV1weEG47MQW2PysxxoYucnfLXeSrsx vND6k80DGAPRnzuxkrdrXsfGhxE5WovyjXLnE06OwLw5wM59BMTl23UE7lqU gYkpDY8KLF+Mhvhau29icwzvyFxXDtPImWey/sYzFzRxlsd2zfeytRbg6xED OnNRRuuMrTM3UpsHvC2a2PirMWJ6coJ5uonHMG60B1vH0ng/1okFLS+UE24N 0Zwjwti9WxcQN9HHRPB4owsaP1k43HDxw7aMu7zgpxvZGNBcx4mzsl1c8Uf+ RO3g3DxzDZ3n4BwmNSDbxEucI4+FLnDuP51zQmUVktWho2SDEzlos8orwAv3 moBExFvxjL84X8/4PLNYc33WBxifkvP1wrJt/pFlYfSivtUOV/0qLNuVf3jZ uMOZO28SVyT+iF0CkjxBjjg8KdZ+kM6HoZ9ocxPWYoDmWqss0lzZgcZDiQWa IwTb9R6BLjs09qvxkWvuP9c1L6M64KorWdi4kGigNpflqsXxHb3CzXk+Wrt1 58JOrMJW60x4hqbxnvMZ+R7zG0ZT/K2mGJ7km7FSftpndNYs2Odt8Adu/Nea e5adp8p254JOXmjzQVM3wXuoPrjz+Cb81rpmKE/npfwT0I+34Dwgc1HG24TG niYG9Ik2cZXmB+GGFw1tvkGe+GiOnq05qpOTe4fbvP0PXGjs6Aie2QWbh3gj //FubzjiHGdyEdYEMo3ORVNXMsUf8WBgTCZ0xM4vJiPWSsnROf3QVKMnMeBH AmvQNq5KLe2gnMgu6yCZaFNLy5QfiYi94hFnxXE9C/wyc/k2nA/SOc8crSGQ Hy+F5miu8aLNyet5fA/nWzhzhTpfaOcHndic/PCFTTThOqw4oyNsuSaLnPGH nlBXGHsFJJj5McbOvnYtCnMCZ46MbQubPzgcCdHWzqGQUwlFyi/6bNZ5NM7T eQjWYK3NWb/a2G73Cjd5Bo9tEO6uL5j3M9u8HX5E59paksmrVTui8y1MrMZ6 V6Cd0wjk/B/GgG1grBNvufnhr7lFno4VOdzQ1v6egUftvJ6rn+nBDad2aDXF aSP4PbLc9QSNk8z6uaZ2DjIkqcAgudDUfWEDzZGLEi3Qb5FSoHluc9ZukvEu ifnKK2qMN7hGsI7GeLNhlMnPuQbJ29annLze1ADgO5mT0NY1nrKtrWFpDUK5 4aE5emyG1Rx3rYzaxRpXgM1JguJytd5r5kNytQ7bMtnMJ7JmxXgrMtvUdmO1 poucHDqSVAS9KDJcSSstVzAPSQJ/EvLKtI7FdTXt0xm7F+hcCuM5rZ9ofJWj fsnxR+SC2ly4M0/u+Nwca4s5Vs9tbM0429Z1HL74IL/kNu0TsWYdk66/iDF5 J49nDTjI1rnMtzQcMTl2sZ07LnKtWVKucD1GvIn3zdyEszbGHZN4/vaK8Khf O7mT9bsNwpz4Jkeh8xw2FvJz1WWZZ5u1IqohUblmrVWsWWvlz7gJcVmTyDzX vKGv1SBv+5sxlVdkrns8XXVy97qE+rb2US8ix11fD3VyP6PtRtNZT8Ax1JnQ TOUWawrqB2JM/uEXa/RC14NZbWiKHL4pYpPgpHwg18yPKCfIlULtBydxniRf NdEPutIknuebdWWsDZjat4nXGtm5E2f+xEtzjCyTd1BPwhwwh88xvOBzgg8+ Tv4Rbmpjfjon4tRxs7VOTV40jbHzHJYTnO8Icq1RydV1Jc10rUquzvUwNmqp awfyzDw8+lw70Bb8aQtf0E5rVYX6uw3evxXfPZFrX8xaBNaTGcv5RZl6NesK zMEbhvF3tisON7GJrcUzZveIl53cw8nLG9tWYy3wwskxHX3x9jiGMHGFtZVw Y7+Nwh0fyu+dqT7Rte4rwn77SFP/9I40vqxRhBO357j0QO0twlxX15DZ5/Wc 7/eKMFriZc/ntX2U82au3DfaPT/hzFnQPjT3iLF5iM2TdS492pkbMdf01Cm3 33evO/DMOczz2uO0jpZrbd/YfwNX7vcsGkRQh/JcnG5kv40Z71xdM+bLeU48 uzfjpVj7PrF5Nv82nAmIs/OQzMfjGItl2/qazWNicmxOb2oAHB8vC2pJQ6sh 5IiXzcFVP6jFHOdwoyeNwpx5kSzVDaMVBqyxmTzDXR/QOXSub7Fz6c04z0Ht iM+x62oMuD4liOuD403uHpyQr+tZguycOtfOaMvjY3N0/p1g35n39Le1cupV Ezt/6RNutI1znPXaZ6kfamBjcF/r/3ytH3X67jzQrRs+HvMBjv3rN1L+5Fpe /Nd9xkZy3LE2awNaWzb1tJdCs1yxXj0nB3KODc9yx0mqcXkWJtdu7KoX5dn7 5Wl842u3MW9m3KPxUWy+WVfL9ecJZn1iSGKx5kjBHuvSgxxQ6+LsuTHOOpQC va6X1QjvSA+9iDK+wNs+R2PrO5x82vE5DRRmbU592H59nKPbrKbXt7pSj7zB fvKD+xtG2Xu45mnyXHbta/9ewUd5kqs5iK9t/eLMPI1ygbVMzeWRNxDRnBd0 4qhsbVn/YozF7QrbZ6zoyX9Ho1XPIkzM6h3hwQ0bZ2kMZfN4Xd8bne2uVZG7 eI6mMdkue3a4obYd77Fe2Nq4sy6yaZx7zt+sQTHrVBw45wXbtZK6DlPrxrmm BqBrj3NV08h31Y/2Tj5odF7XUWitxcTNPi675tgzVirQdbqaYzDvQG7ua+cH 3Dzh8ZYT9rspl+zaePW1kXYeXmMbm/+78tFsG19kanzBmpq22P4Ca2vtbU26 va0l2PqaV4R7XYhTL/KNcs9Tu9Z4aI5tbD043qxnapZUAq0ttnGcQbPkElfr 9BUJxXqe+VsQjAHyDT+MA3PzwPgirVvxfX2cMfGINd2xKMcmX8epEcaIa6Md rtRXruRY2yMX8hT1HX6wj3MaUo+dXMvRcWoa46F4M1frxzlQ1sIRmwYmmfp7 kK2VBCIvCda/fWGOkq/1EK7vZ2zFvwPy0TzE1IMbO9oRleXKQ5j/uHIkZ22S zVcb6roLa2d2vWsjpwZs+eITYebedY4G1+a6L/2bEV33m2Og9p6rUF2wa64c Lph1WznWvnNMvhLnnoPnsWY+PNf1NynKQYcXdg6yia3nkr+c16xP7WiXof5Z c+8IE7PQtjTmji2w3HDD2EGh5uPMw/1gC372b6NoH/ytfLG80WMSzffR/Nzm 6QS/nX98vs4rMj9x1fkZN0Q4nMky8QbsnzzgvOULBHjzQqiZnyF36tscilzz tvGhzsd5zqfFuuuzrrl9aIZC8xzwILH4Gc14pvX8W6eEIrtuBsA78+/CAuMN N8gR/m2Mk5dp/cJjLsQ7Mh825tFX7ctVeNbX6tvY0cRcFmEm9qqnIE8YZ9lY 1an1Rlp/hG/v6+JIvv7dgbb8Fknm7xCawG784g0CuM423vydHOdCfOy8iJOf cy7F286nGN9Gm3l27eofa24NXev53Ov62HJO2qkZetlaGLnSROcKTfyva1B0 DiZbtS7QqcHFOnOHdh4x1sS7TW3tTdfakE/Muezxus5NY8lcd007ytQBfCPN /L3ywllX0D5N/tE2TZ5vnWrnM7Jdmu/DXFNr924tcGq5+ncMuq6qWOEXX2z8 U4KpVZm5DzPvEcK/+0kvk5YZ5dIys4O0yizX+Y9WGWXSPL1UmmEf/0aEc4lB KbheotEjXcdB3xjp1Jny1DbUJpz8NSLLxBrhhjfc3zAiT+EVZbhG7Wti52ac uTzacFM8dxCeO1i1oERBzQiyf5Oh9p9keMF9wUAQ9SKx2MZYZh+v0xTbAvA7 MM7NDfUtVmeVG7aO1cTWdxlv+sYUusZV52M89NbFlwgTNzrvxXfU3MP6Cq0t cHuE1Z4Iz1zE/F2b1rPsejgfW5NyYi7avtGDbD3Wy8kvokwuputGwg0HGrrs x6Peb2t/9Wxs7ui9a60S0Ij7oPUNuI1zbKr7pq0XZnMVZ86DeXso++mmPhxq c3i71tfJnTl3p/Vo5UC+9s3aE8MHcoC5VZCHRgTYuR7fqGzXvJ+rvhZq5vgb cO4/NE1eUG6kKzcIJ55qbOfOmsS4+UFO+Go8Zeq3fgmO7zV2EkCO6N/bkiOs 45p5juBk83dxLdPBCfKA3MjoIG3SO+jaq+b8u1auxU3l37eWmloVzqUfpkap nUS5faL6VfQbRHNO0rGnQldu4xsLrYorwfkleKZS+Mgy6FYpnqdUmiaVIZ4o 01aBbYGJsPkk7iuV4JQyaZbC7SW6vandbrhTCi6Y3zymWTKBc5LNNQII6yuC eU2+P96hKfgXoFpaqGPn1hVyxuivK97SmIjvUgQU4r0LYN/5yg+HG4YnuSbW CreaEmE45MVjuYYy0nP9pOFYg6gc19+6NbBzFSZmzTDripx1E+3NOqwXdVum bTPUjtXe9Thzjto4eeCsR2pv8kau5XK4wX1sG4YabjRsh3u3yzJzz8ALiFsI 5Q6ObdQOXML9aadegJkbyVB+cO2J5ibRJj/xzFOaWqiOxOS64qUAj3iL8/FN osxaS8Ksi7G1ZdaYQ9Nd/KjP5wY3XmidJv/ZOkX+s1WyqUXaOSzOSfhan+eG jaUSTIzEuXHqhMZJqhvgCH9TS2gT/Bu8RFOXDUoyc4OBBOcLk8zcuoOmdq49 0MZe9MWs+epz8N7WhnydGN4+D/2vT0yRoklcsfIiMMHhQgcJSq0AOsD2iQpo WUdtCd2vKMfxBuSKy87JDcuFYCAI1wxOKcc1oIPpFdIKaIZrN08D0IZgHzkW kkwOUYvKlFfUnUA8F8cnOAE8wviw74yTvwU1uElsset9yBFvcMThiZfGY5Yz 0JiG1FZFvmqls98LvqKRs47aqSMzh4nKtn9/kKNzK/Xs2jrGqJzz0tbihfYZ rv6LrnVH1vdbLrg1Ikt/17fceUHXXLnrLBpDtXdz4iXwQzkCvECO8Tfahu3J DaM1ps6VpbbLGjC5wbnZQLv+yuiFQZDzd0V/gDOf3NRjvtO1TiYqy6UhTq2g kV0j9hL4+QK4wbjq7x78cGqcWkN15XhObFBo58edXKNI9cLJI1Q77DbqB3MO gr4zmPaW6OYS5/QCVWs87cScZ1Ds8sf6m3YD22+iGlUC/SrB8SXGnrgdeuEb i+1x0Iv4MtyLtk77B1I6gh9EpSI4hfxAHwghT8gPcCcQtqx6g2v6Ml9irEQN sTpC3SGnmqVVAh2heZWIDTtqvzX6rT1+87rNwJXm5BJ5Sj1KgC4BwQD5G0jt Ug1zc5O/uc8f0PeLM+9HrlAXyReXrpAf4AG5YWp2hjPkk3e0hR6XZ2rbdh6x gZ2/Yu2vQagzF2//difMvQbVcw13fVtvN/OpWa75yIYRnjX1bJ2T9Y4w+R/j XRN72esoX7K1RtoQaABO1Gtn+NLA6osDckO1JCxL1y/qHAlzEuYhkaYOq1yx 2hFk/47bQfMksy4vJNH5ezLn39gwaxxc65ttLtXYWR8TRm4aPjOu+nsb5B3M PdpkyN/AE1ctzmPNqmveT7liarRaF4ktfJYrNkc3uYeJxWnbTVkrTTT+2J9t YrH9XeQ+11X3cq5peGC44NG38FX/y9ipHPeiXVWIP7gQQNtP7SwhaZ1hq12k RUYX5DZdpVlGV8RxpuVv7muWxn2VRk+gMbTPAGuX5F9AInlWZmyX+oNjQmD7 zdM7IY/qjGt31rZlZmfEi12gJe5tzdM6QVdwLM5pkdrBxHR4vhBywcUHw0uF h4aRN4anxgewdWuK5Uck9cHUupQfjLu09mW0RTUn0uFQPnQj172WRuvhpqZu 1t7kuOZJGtu/IzZ98zeTXBep87hxZo6QtTBdy8U8Jcr+PaVqlbPW0axT0Lkt nWPl+k8zx9wwLMtjHgS/db7NzBs2am/yE613WY7oHCO45hNu13Jxfb/m7IiX onLMGh/W5fk3ly4dcf5O2YMbiZYb9t/e8bdrkvzs30X72DUBumbf+ouXQt1x 5j/wXISPs55V6765Wst31r15R+c+U79y64pT47V1Klu7Ij8YRwS48vdC9ckO J4y+GE45vPDVNSlFxn/CTvySymwLe6F/Z4wDmwuGDw+GDQbBxkMI2GdIFuw+ u5u0zuopbXJ6Stu83tIeaJffS9rl9ZI2+b2lVW4PaZ3TQ1pldZeWWd2kRZbl CDUGdmrss0xttCnslbpDTvAY2n2rzC64fldpg/u0ze4ubXMcdLPorvt4DHnD c1pnVEqrjI6GM6o9BuRZs3TDoxAL6lPTZA8tsRz1jy/VnIpa4ks9AV8aA94Y Ny9wxtvCK6bg2ZyFuQr6DSJN36wFMnNZ/jrfY/9W0sLM+RR5/JsRZk1ciF1H 55eYb2q99t8YYA6vtTFd02hyff27L+2b9RNaC4nzWMcZa+bfuf7e2KedC9Ic yr1WTmP9SDNH7eNaC5dr5+Ls39HEmL9PcP7eMtj+DbLJi816jGAPBDn/DpVd v+Hr/N10jK3HRdq/gw0z84AmL3NyMWddnn0mXRedZ9fNOVpi8pNn88n/jifG 7gPinLja1nkZo8UWmLmTmGfzGl+bv/J4+u4A5QPshHbL3IFxC+y0RWY3aZVt 7Zst7R0caAv7DyvoK6EF/SS0sL+EFvWXiOIBElk0QMKB9oo+0q7A8EV5kgM7 JkdwbWpEU8RDTZONVgQhVgrO6KSaQJBTrbJ7KPfa5RqE8p5AOO4fqugJTvbA vu7KEeUSONU+uzN4A26h30b51VXbVuQRrw+eNE/vrJxxcSW1wsUXjoV/ovEZ Rj9LYY8l0jiOPEHchTFj68N8BWjEuCvCxFwNXHl9vllrr7lcns6jswbZxK5/ DnDWkdl/gyhQc8cCrfVyXQr1g5rCvw9lfaShSzc85rSi3evLvGPs31rq/ICp d3JNs5/aprN+0/xu7JFbmvnaIlPHiDf1QP13keLc/8aYZ23eE6y1hyS6647m 71RNfTLI1hybJth5Bc0BjP3x/b11TZxZU23WJuW61jA4a3ueWa9n40v1Q+Em J9G14K6Yy6lDFlp4rC3x4IlLI+KMTjg8eIZHNg8JTC5RGyUPHDSHH6afbwWb ap3bTTWgZW4v1QfyIaywn+FBycsSWToQeFnCgQjbjyoZiP0DJbS4P/jRF3rS G36+h7TNNTrSIrMr7tPJaBLvRy7gXq1wr9a5PK6X5UIfaV/QB/zrg/sChX0k oqifG3wWyw/DE3KoB9ruEoptYfk9dD/h8CgUPGqfa/SHfOF7tgCHmmc62oJ4 kDoJ7tJPBChXGFd2wLiVK0/8EqzGar5iYk8foDHG2xucUW2Jsv8mmbO+wbUO Ltfl9x04c+2ec+6NY3NdXPDS+ctn19x7OfF4tNEvp0ag9cUokwc1tjVGH1v3 UR4oB0wthjma1jKSSyUE79k8tVxawBaasa4JNCdSDFo421LcrWef5zRLK4Nm 41pppt8MbVBKic43mNpQseaXjG0CbA7cxNYZm3jUFxvbmJZ9Zz2Ss57JWcNE fugaCZ3XtTxTOLlgoRkLvLvXf4m/PPMUow/KBY8aqua+GI+QjArlQ0v6V7VP xCywn3a0q4LexiaLYYtlAyWm4hVJ6PiaJFS+Jomd3pCkLm9JUre3JJno/pak oE3s+oYkdHld4ipfkeiKIRLRYZCEgUftYcu0+dbZDj+6KKhNbaAR1BfGZcoF aFE47D+yZIBEg2/RZYMkhigfDAySKPAwCtyLJEcK+5jn1POgK9Cr8EKDCHAz vAjbuB0a5rShBeBRvtUc8KQldKalwxXEjeRrM8RoIdCyEHA4yGpdYDJa6gtr CyllrtyFOuOfZONTxKm+1JvYYlcMa+Zqi42/0n/v0syrN3HmCxPt3yQ4c7ic Q08sMHO3zhpTuyagsf2+BkXmnowHrfar7iWUajzgb2OCQNi8ybdYEyzXuDYk nXkdfFMavn96hdY5WiImbYP3bp1ZKe0xFqE5XaRdVidocScJtWiXXSltszoq 2mVVAjgHbess6DWObaV9HlMJHe8oLdJwrzRTZzT1FlNv1NpkcpnLJgOc1qNW whjXN7JQ4W1riWatg5mXa6j1RFtftD5BeeER/ypiTds41j2eWg9i7TXBPUcQ iG8YmExOk9sdwAvE6RgH8qIdfG/7QtgobCgMdhUJ+6Md0i7jO74iSZ3fgP2/ LWk9/ilZvd+XnL4fSk7/jyRvwCeS2/9jtB9Jbr+PJLvvB5LV5wNJ6/muJPd4 W7lCXkWVDYYtMw7rrVxg3MSYrV0+bZn3G6hcoP3HdhgicUA8zovv+Cq4+Lok g49sE/E7Hvtiy1+W2DIcT66ARwT55DyzAbhVOkC5FFXSDy3vQ76DS0W9lU+M /dqCL23Bl7bQlzZ53TQGbJ1jYjGOD3lDfWme0cnkTpqLmZhM40Pli81hoC1q m6yXJZTY71/sAusoOofL+rOdy23KOdpki5RSW5Mv8rCbUlNf0DjU3FefBc/E ZyO/VX+Rh7XSGNO0+ps6CT/QhjkbtTOPetpL/Z5+b2ortoWjH4ExiSxi20ui i3tJbEkfN7AttqinRBd2l8iCP6Cwh0RjDGNwTGQhr9UD3xr+KJ96DtvCWLbN JeB/sxk3d0KuWKl8JEc5phxPjW+TO2r9k7UV1kP9OIcAm/clqIcOD4hIm/c5 NXYHHjV3L8uPRh588Ykt0hpUgNYz6S/KNV5g7hucYeKn5ozDEYuoz8a4RNC+ YE9RsD3acyw4kQidSOrypqT2/KdkghP5/T+R4sGfS9mrw6T8ja+l/M1vpOKt b6T89a+l9LVhUjLkCyka9JnkD/hUcvp9KJl93pOUrtAY2DVtnjEZuUBtCKdv pwaAE9xHXeJxKeBhKu/ZlaA2vS2p3d6R9O4AOJeGNqXLG+ALdKyCPBoMgFPl g7UfXzHEYrDC7CPvyKeBypPIkr4uhIMrocW9YSvwD/jGofiu7fldwZW2GKO2 zP1zuqn9tWQcxhgsjTmLyVtYu1BtSXHn9wF2ftRfuWJqykRQEudxOiD3gV/N pI10UnvR3Ii5Evx1K9hR6zzadFc8A+w5vzu0ETZX3FcRWdoXPqCfcp/vRvA9 E/C94ivhOzoOcY1BAvqJ+JZJ0PKUzq8pUi3YT6Tfg79RVOLYykHAYGwfjG2D JAX9pE4v6/aEioESX9ZfYnHv2DKgvJ/Elw+QpA4v67HJPL4zWl6jE5+rv3It GtyKxjNH45zo8v7GLxUYXpI39MtttIbT3eS4DpjrIrZgDB5k5wSCtXZaqrri r3NbRmtM3bEcKIMuIEeMYR2lBHFskca9vvElBqzFwt/ot2FNRv1MF/2+bfNM PB9eaOKWqPJBxjd3hW/u8ZZk9HpPsvq+b3RgwMdGG6AHeWgLBg2VYnCi4u3v pct7PwE/Spf3f5GuH4yQLu/i97s/Sqd/fi+Vb30r5a99JSWvfClFL38GjnwA m/4n7PlN/V6MkyJLB+E7DwAfoRd4hkTwIpnaBKThuHTwIRMalU6AD+m93kf7 nmpSNpDeC9frDs50fhPf9DXlsPK40mgM20TYCZHEtuMraju0lXjLpZjygYro MuoNYriSAeofIsDXiKI+ao+hmvMD9Luw0zaIDR3Nc9Xi6GcQizlxWIjO9VQY X5je0eZyXVSL+P3b5/XSuC8SHI2GXSV2GoyxeRWAX8B3SMN3SO35jqT1flcy +rwLnwSt7vuejmPOAKA/v8+HUjDwY4zvp1I0eKgUDvlMSl79HGP+hRl3/C6G jyoe8jlg21fo0740gB8rwzcqe+0LKeU58HfF+FbFuF7hwI+Aj6VwAK//Cfqf SAHulw+7yOnzT8nA86V3fwPf5g3J7PmWZPd+R5HT+z3J7fuu5OKYvD7Y1ust SevG7/qKxRDlqPNdaAsxHHdwLdrqP+MVxi1h6gf6qR8N09yzL3wE/Bdy0tbZ ZsxNrd/ousbFnFPI6Kp1Vc63BUJ/AjQWdlDpnotzwO/F+YHM7ppft2cM4xkv dXlNfXIm4qFcjEnBwE91bMvf+Aqa8J10fOcHqfzncOn2wc/S65PR0ufz8TLo 68nyyrdT5bXvpskbw2fJ68Ab389QvIptg7+aJP0+Gyd9Ph0jPT78RTpCX4oH G55kkCewfSIZupCCfIXcyYYuZfd5H5z8RPLxPQqhPdSoksFfSukQfE988w74 puVoS3CtQjxnQf8PJRffJJsAr3PAI/7ORT8X/RxuY7/Xu5INnmWAT+RdKnIj 2mFyZ2qVhfLrVeVQnNWb6DLWGRy+9NOcxtQl+tp6XW/9ZlrDZkyW00PjF4Kx DVv6xYii/jre5GYyOEB7z4W/yYftlbz6BfT3a4zzt9Lp3R/gb36Unh//Ir0+ HQGMkj5DR0tvtp+Nlb5Ar6FjpPdnY6T/F+Nl4Jf4Fl9NlMFfT5LXvp8qr38/ TdtX0b7yHX7jW7z5/XR5/YeZ8tZPs+Sfv8wBZss7v8ySt0fMlrfRf/vHmThu qgzBNQYPmyAv47oDPh+n7cAvxkk/3L/P0JHS6+OR0uP9n6Qz/F8FY4bXvkS8 8CX6w6QTfnd6C+/wNuOIr3V76auwo0F4R/AqD98pD9zKBddz8I3p47LwnTJ6 0f8xLoCPQyyQhFghGWDL34yjqYWx+B7JnenvwC36N/jTOPjXuDIThzMmYDzN cWbeyroO40n1XeAL9eePaJ7ZVfczp2gDv9cO35a8iMX9kvE8abDJLDxrDnSi AP6n7PVhUvnOd9INutDjoxHgwTjpP2yiDAAGkws/TJe3McbvjZwrH49ZIJ9N WCpfTlou30xdKV9PWSlfTV4hX+H35+OXyoejF+h3eBNjTx4NxLj3+mSUdH53 uFS8+S382DD4Nto+fRfGF/zrDC3q9v7P0uODkcrDnji+24cjpSvQDdu6QKPY r8QxFdCp0je/lwKcmwcfmfvyUHB7qBTA/+WhzUNbCA4VvDxUkQ8u5SM3Ipgb 5fSHBsEfZ8PXZcFW6feywKEM+OwM+Iq0bqwx8FvhG4FD8Z1e0TqDxitWexzE VKBFTBdfjhgPuVUCY7uOxvcwLszEGJPvJfA5HWBHfMf+sPNXvp4ibw2fIe/B Zj8aPV+Gjl8sX0xZLl9PXyk/zForP81eKz/PXScj5m+QX+ZvAjbKT3PWy/fY x/0/ov/TvA0yAhi1cJOMXrRZxizcImMXb1WMW4J26VYZv2y7TFhRJdNW7pTp q3fJjNW7Zcaa3TJ91S6ZsmKHTFpWJeMWb5PRCzfLiLkb5MfZ62S4vcf3M9fo 9/1y8jL5dNwieR/f/u2fZsqbsIU3vgX3fpgB3s2Qd36eJe/iPd6Bfbz54wxw cwq4O076gtc9Px4h3T/CdwW6f/Aj8JN0hR10fud76YiYnGNS9oaNy6Frqn+I z6l3BfiGefAhWfCrjF/yyCv4vawe8Hc96ROND8yy8XYSfA/HPYY1VNaSGLvD l0UUwccVUpf62bpPH615ch/z0lh8xwTGmvCf5EQe7KQQdlMKX1yJWKn3x6Ph LybIkG8mwwdNxzvPlPdGzJOPRi6Qj0ctkE/HLpYvJy7Tbzcc32XEvE36LcYs AhZuldELNitGzd0oP2P/8JkY2+mrlS+fjlkErszV6w7+CuP2xUSM21gDaEy/ z+Cnhk2SIeDRK99Nl1e/mSavfzNd3sXxH343Qz7+dop8QuDZPoYufQSf+d5n o+Wdj36R1zHOr7z9nQzGOL+CmO61d7+X1977AfhRXn1vuAwBBgK9sb8rvkHF a/gWQLFF6RvfgGffSBlAH07f1/HNrzX24NhonEKewX/kD/pUaxAcu3zEHbT5 fHAxH/tLVNtwLvSWXKcG0B/Q/9KHv/PTHHl/1Dz5HD7luxlrYPcbYJNbZRLs c8aqPTJv3V6Zv3GvLNxcI8u21cmK7QdkZdUBWbXzoKzZdUjW7jkCHJbVuw/p tlU7uO+QrN51EMA2YDW2E2uwfc0u01+5Y7+sIHbu13P0GLY7Dur1ea8lW2tl Ce67YOM+mbtut8xes0tmrt6pmEGsAq/ArcnLq2Q8ODdm0SYZu4Dff7P5/ovB yaUA+qPIY7zbD+D2t9NWy7BJy+QLYCjem/z/ZOwi+XDkPPknePQGOPYKvin1 j/5zIPSKmth3KDQScUfPj0chfv8ZmvSdcqc3vnd3fMsu0NhuHF/87gXu9URc 0w3+shLHMeYpBr/y8G2Y9+ZAs7IB5gvZyIEzEK+mdmetlVr1hvrADHArm1qO 70stZ27QFffoibinL7Rz0NcTwf/Z8v4v4MPohfATi/E+S+SzcUvkC2jB5/jN 9ltoBP3KqAVbZPzi7TIZfmnSCvimpQYT6aeWbAPguxbBd4E/I+Hzfpy9Xr4F VzhOH49ZKB+NWIB7zZX3wb/3RszV/se471Dc52OM4TfwofOWbpa1+DbbYDP7 tlXLgapqOVpVI8d3VMvJqr1yumqPnN2+S85uqZLTm6vk7Obtcn7bTrkAnN9a Jee2or91h5zZvE2Ort4gdUvWyLY5S2XF1Hkye9wsmThypoz8eZoM/2mafPPz DPkS+GQ4fAL07t2fEH/Ar9M3GkxXP/8W9r2t++fIh6Pmy0djzFh9NnGpDJu2 QsfmF/iHkXjv8Uu3ydSVO9S+Zq/bI/M31cgi2OFy2OSa3Ydlw96jsrXmuGzb f1J2Hjwlew6flr1Hz0jNifNSe/yC1J24IAdOXpQDpwwOssXv/Wj3nzSoO3kB x55X1AB1OK+W5zvQfeek+thZ2XfsjOw7elb2HDkjuw+dVuzEPXccOiXbD5yQ rbUnZMM+cBD8I3dWgVOrthtOrdl5QDlFPi3HtqV4j8VbagDwamudBfrYtmhz tSzYVC3zNuyVOeD8THBtBnRq+opdMhUaRhuhzv0yb6PqH33FV9NXybApK+Tz SeTQEuXQ+6PnqY+mv+6HOIY8GAb/PBS+lv6WNvnVxOXYtlS+gK0OJe9gT+8g zn/la54zVrrDvumnGJd0Bq+YF3eE7dP3aVyBXLoQfq8UcSLjpu7QdcavjFWp gRonjV2IGAm2P2OVDJ8NvzZnnYzGs4+BfxgLPzFu8WZgi0xAOwlaPW35DviV XTJ//V4djyXwP0uBZRg3+iJiqR2nRRgn+qQ5sI+Z0PRp8JUTySXozcg50Bno +AiM0Uj4G+oOMQ4atHZ7jezcd1iqao7KbtjOXnxTYzOXYB+X5NDpK3L43FU5 fuGanATOXbwhFy7flItXbsrlq7fkCnDtxm25hPboqcty5PhFOXzkrNTtPy61 sIGa3QdlT1Wt7N66T3Zu2ivbwcEtG/bISvjO+Wt367cl5m7Yh7Yats1vDnvY XAvbgG+vok8/LOtg45uqj8uWmpOw8xOyA8+66yDs/PA5qTl2ztg4n/cMnuHc FTl2Hs8MnMIzn7p0Xc5cuiFnLt+Qs1cMzl29KefxzMQFi/MeOIf3O4f3PMvW gv0zl6/jerjmxesGl667+8BpC47VCdz/GJ9FcRXjeFkOn+GYYmzJNzy38gjc 2XPopOw+fApcAg6exLudkh0H+K7gdd1x5dQ2i60uYDyAzTXHZGP1EXDusHKO 40W9W161XxZvq5UF0Kv5sI3ZGPNZGPPp8CP0JxOWmTjvl7mII8GdYfCVQycu Rrw+X/3xRNoi+DVxyRaZAs2ayDgStjkW8eUYxqGw3+Gw5WE45yNw7IOR0G3k We/+gvxrOGJC5mXfTJKXvxwrg6BVLyMWGQx9GAINewd8/GTcQujeStj/Rvj5 LYg9t4LbVTIbNj9n7S6Zt363LNy0D7awT5ZvrZEVeJeVsP3VVfvVp9CPrEJ/ Hd55M2xtS417nLZWH4NPPCZbqo/KZozNRuxfD1+5mvpOHeeYwA5nUavBk3GL yLutMgWcm4V4eP7GGo0ltuAam+lf605K1YHTUnXojOw8dFZ2we72HLsoe49f kb0nLkv1yatSffqa1J25KnVo9yuuwiax/8hF2Vx3RtZXn5R1xN6TsmbvCVm7 7wS+20nZBJveXH3C2Dbut30vgOeuqjuB+5yW6qPn1CfTXx86fVlxGHZ+9OwV 2BhtDaDdwcZPq53DVi/fctnuedj6hWu35cqNX+Xqzbty7dY9uX7H4AZw89f7 wAMP3Jdbdz3h3n7jzn0959qtu7jWHVwTuOnGpeu3ca9bek9y7Nwf+OP+DR6C j2ccbvLZ8dynL/MdyCX4m/OWQ2evKn8IvrMC/SPk+hn4p9OGU4fA/4Mnjbap vsEnEHXH6SPOYhwN13aCY1UHoFUYX3Jnw76jsh7xIuNAatSKbUaXFsD25sAG Z6yuQm60XfkyFvY/Eva66wj1DjYBrlL3dlrQL3Fb1f7jao8ba47Imj24LmLK lbuge2yB5bDDZTtgh9sQS26BD9wMHwj/OGfTHmAv9L0G/K2FrRxSjm+tM9i+ /xjuAbtQf3Ha+A48y74j5v2q4VNoL9XHzqsvp09hLEANV70/ZWIB+h/264iT 51X/a1Tfz+l59K3bcN9N0IV1ewwP9uG6tTj+4LlrcgQ2dwRacPjCDTl68aYc uwT/f/EW2pty/MptOXb5ltl25Y4cvXwbx96Sw9h3GMdWn7oqO8CJLXVn4a+O 4z2PIhY4gtj7COJz3o/fBHyoQ2xxEM90xMQwtHt+82PAyQtX1c/Sli5dp+39 Ktdu06atjVpbvnX3ody691Buw4ZvswV+vf+b/PrgdxfuPvgN+F3u/fZIHige a/vwd+Kx/EY8MuDvh4+w3f7mPt32u3Ouwb2HvMdDuXPfwNz7geUSOEf+3b5r cc8D5veNO3ctx37VdyO3rvEdse2ax7ZL12/JRXDOwSVo8WVw8hKBcdHt17jv lvKSOHftpoHq2U3jNy4aTTuB70rdPHqOY31JY8Va2MY+xy4sf7bDH26tPSab 4FfXaZ4Fv7qdml2DvGyfXMM3uIr3uHL7vsEt07+MbZfQvwg/5OD8jbty9vqv ijPXfpXT1+5YoH/1juIU3sHVt9DfeEee7+ACfNwFjNFFgPe5fBO4xfvfdz/L bT7bAzzjQ9PHs17/9Te5Dlu5ju9zgy1sh7hG3DG4ylbPwzWIWw/kEs4nLvNa wCUccwHbz+N+Z4Ez2j6U04oHwH05dfO+nLj5UI7eeCCHrj+QA9fuS92Ve1J7 +a7UXrgj+85cl10nrsp2cgT2v2X/Wdl64Cxia+rOWctv+raLcgQx14mz1+QM vt15xmWIXfjd6eNv3rmv9k97v/cQdkl7fvQEdvtUfn/8VB49eSKPHj8RdOWJ B556Qp7t/3/57+nTJ4A56anFY2x7/MQB7/9E+fOAeIZDj10cuv/Q4rf/DuDr w9+VZ3fRKiyXyek7eGeCvL/1B9x+xh88MLB+Qvl512jddYK2Qb0DH6/evmts GjZ7GfwjaG/nYbfnYYvnrt6Ws4pbcubKLTkNnILPOwF+HYevPIaY8Ah850Fo 1128lz7fvd9wX4L3fQjbe+C2vTvGNp/lzH1r67/KOXznc+DIWRdfDE5dcbhi OEUuXLhpoNcgL267QW7Srq962LkC25S3APvOc3Gfm9d4vluGY8o1j3uwvXDj no6P8hvPdNY+L9vzaM+rj/oVNgvcIDC26DOuuIxjrmA8LwIXMJYXMJbEeYzl OfipU4wPMJYnYf8nECOcPMf85DpykZtyBX6PfvI63p2+9g7imDt49rv4xvfg jx88NDb2G/igXHjsts0nhIftuvnw9P8F8ofj/8AjcV+D13/y5I8wz0Be/v74 sfz+6IlLd37z0KGHLr48MfA8ju9jf/OYB1bDTP+xcueecueR8kf5onr4bKu6 dc/RLW77Xfcpr+5ZXbv3m0tTb1vuGDxUW76l9mJ04Kra0D2rCQa0m0u3jK1c uknctbZyR37Hcz/C8/7+u3mX3y0eYVwe4f0eP/O9RMeOY/jYYzw57mafCFwe xpV4Kr895hg9teNmfCC3P37sPv+xtQHnOz3+78DzOOaPHRsyz/f7H77HQ49v 9sD6L8Ya9x787voGdz19lvonAHZ76zZxV27d+lVx+9YduX3jltyGft+8cl1u X7oqtxRX5PbFK/Lr5Wty9+p1uXfthjy8flMe3rwlv93+VX5HzPHo/n15jJjk Kb7/08ePgMcYo8fGQP9/+N8fOereZm3nmW//5Bm493naobHLR2pfHrx95NY3 tvd/txpmdctwyvDq1n3LIfRvgDvX7ljOaDxzV33kRfi1BVWHZQli5WWIlVfs PS6rkT+uqQFqTwEnZW0tfyPPxPbV+47LSmAF8srlyGVX4vhV6K/Yg7h7zxHg qGIV8qA1yJvX4TobEN9t2H9KNtYZbEJ/C/LfLQfPyHbEILuOnpfdxy+ivSA7 0d9x5JxUYfv2Q8iRD58Bzil2HDkvuxCr1Jy8glyDuIwcgvnyRUUNcrY6xPX7 T18BLisOIoc+BN9+DH7+JPII4sRl9qGljFGhp6fQPwktoMZSa89C885dI6gt RofPXKUOmvYc9OA891MzqdeMG9Fe0Lj5joGNmS9bfdexxrZzuPZZ3kfz05vQ dDzLJcbK1+QonvMwtOcgctKDyEUPIDc5wHfBOx44Y7YdIk5fVe3n8ccZY7M+ ZHN21qV43TPgs6s2Rb3Ds/E5qGNXNfb/VfODG8wTbhk4ebjJxW+b/i3Gf3ew n9uZEyBHgL+4gByA+QHzhss2X7/KayruacyoOQVziJvmOF7f7DfXvHrrtvZv YNsNfR704V9u3oF/+vWuAWKl63eYj2H/nTtmH7ZRg28TsOtf792HDj8wQF91 +QF1+TfwAnhg8MC297T/O/bhuIdGw+964A7ip19tXMeaxU8r9sovq/fJqHXV MnZdrYxfXydj19fKuA37ZfwG9mtk7NpaoEZGr62WUcDItftkxJq9MmL1Xvlx xW75btkO+WZZlXy7bKd8s3SHgv3hK3fLj8DwFWz3aPvTqr3y86p9aKtxjRoZ g3vyfmPW1RisNRiFZxq9ulr7fK5xeBY+zwQX8KzERmxfX6sYh2fltonYP3Hj fpmgqDPHARPWW2D75E0HZAraSZv2y9TN+2XG1oMybfNBmbL5gP4mpmxBu+WA bp+6hTgk04ApOHcyj9PfOA/nTt92SKZvBfB7JnL0OfA7c6uOyHxgIfL1RcAC 9rGdmLf9kGLutoMyB5iNc2cCM7bYe+P6kzead9Xn5zuu47fgmGBsMP7j1uyT sWhHr9ojY1bx9x6ZuG6fYvy6vTIBGLvWYIIDbJu4vhr7q9Gv1v4EPb5aj+M1 +Zv7xuE+47hvjdk/Gu0Ye73x2DcBz8JWsY79an3GCesJXte0E/F70gYA7US9 J4/ntXkdg3HAGDw/2/H2/pNxLo8Zje18T547dWOtTNtE1Gk7c3OdwZY6mb65 VmZg+wxsn+GxfRbGdDa+o9Nny/2z2G7BsWhnb92P73BA5mw/KPPxXRZUmW/z 0/Jt8vPy7TJ6ZRXed5dMWLMDY7RDJq3bKVM27ME77cV32qfthPXm95SNePZN 1TIJ2yduwJjgfcfwW+C9xnIc9RtWW3t1UIvj69SuJm/i968DaIOws62HZQZs atb2wzILtjMbmIFnm77V2N5UPPu0rTyONgmbxrkTMQYT7LUnbMS445oTce1p uB6vMxv2OBv2SBuds/OozNlxTObtOi7zgXk7j6E9IfN3H5cFO/Eb+qnb8Xvu bv4+5oHjz5xLLNhzUhbtPSlL956yOClL9hyXJftOyPLaM7Jw9zGZu+OwLMD5 83efkDnA3L2nZe6e0zIHmLXnlMzEtlm7T8qsXSdlNo6bheedg+fWe+7A87DP Z8f2mfheM7dzTMCfbYeVh3xPcncK7IHvz7FwMB7fZyLsaDL2TdpIf1GrvyeS b+ojavQ7jSEH1Hdg+6Y63c/vNE79o/U/8JPj1tdpS78ycZP9bhjrSXoOr7/f XNseQ5/Fe07W1sBct8YAv9Xf0X/Rb9ln4H3Hoj92nfGJY/EuY2BfY3UfjrXP Md76bmIMzhlNv2qvq/ffUOfyuaPXVMMfw4/Dh9CX/7Bil3y/fKd8v2yXDF8O 371yl/wEH078uAI+ncD+H+jfl4MPGziWNTqOkzbVap82N06fCxwnhzHeY9db 6LhSbyzUl+2RUcDotXvUr7E/Zh04D87Q3yjAobH0G+vNN5wMrtPmp6vvNf6X v2dsP6TcmKbcAC/Y32aOmaV2Qt44XDF8mM5zYD/Tdf8hw7MdhhcLYKuL9pyQ xftgx0T1KVlRTds+JosRCy6EfS/ed1r3rag5LStrTslK7F9Zc1L7q7it9jTa M4g3T2vcubbutKxDS6xBzLi67owsrzkra/aBJ/i+K/dfkrWHrsiGA5dk+4Hz shfH7K89LocRdx7ac1gO7D4kdbsPSjXaXXiGKpy3qe6CrDp0VZbhWRbXnpWF By7IAvBuwU5oz27yDLzZY/g5Fxyau9NgjgNwaib4pPzhWAJTMEaT4E8mwJ9M gj1PRH/yFuOT2E7YRB5YXm1yfI3xY+QA/RKvMVnPO6DcII/IC/o5Xpt+ifZK HZ606YC29FPcrtpNn8jt2Mbful05XafHT97Ma5jj9foba3XfOLQKD/86fqMB n5vHcbvyc5PZps+0yTzLRIsJHs+hsdAGw/1x62osH2vcvFWOuftjrX/ntSfS J+s47tf7TEGcMEV9N8Dx3s4xP6zjPt1u534da8Qfk7eYd52svsXEJpPVvxj/ PsHybozyjFzZq/wbTY1VvvBcfBdoHXky09o6+TKTmrKTPv6Y8fnwvQvRLtzj tMdl8V5wAPa0GD58Kex7efUpV7uihjYMG681/aW152UFbHHLiWuyBznOhv2n Zf3Bs7LugANsO3haNh60LfcjF1uDXGoV2mXgybK6c+DBBRyD3Gn/WTl8/qIc 3bNTdk8fJ+fXLpLbm5fInYVj5cGUYfJk+mciE98VGfm6yPBBIj8MFPmuv8iw fvL0y0Hy+KtX5bfv35c7Y36Qi19/KScmTJe6qgOy9eAFWXb4sizAcy8idh+V ReDLfIzF3J2HwYvDqlNz6QvAjVnoc6wIxnfUUG6bUWXGkd+MfoT76UumbjM2 7tic0QvLEXKA9k+b2GS+J+2XNjfZxpf89lO20Q4OWZ0/hOsd0Pvob3IK33X8 pjq9x0QPu3Z4wGvSZmkXhPrbdQT7exX0x4xPaCv022pLGnuZvvHl1u43mlbt DPvGbKw2Nr+hRv27o5fjrE46OuQ8i+M/aNu06U/mrgXWyWcLNsiXizbJsEWb 5dslW6EvVdChHdCbXdCdXS7t+Xk1tQLPutbqweZa9Qfj9bkYW+GdVu/Wd1T9 Xm+4wWcbxdgX481x1LEHFybg/NHYPwKa8yPiPHPfbbhflcHyKuRIO5Aj7cQx u1WHxgEmXqDu1WjMNR2+bha0ReN+2M28HYxPDmpMORvbZ8FG5iMu2gD7P3Lo sNzcvkp+WzpKDr/XVybNWwn7O2Niz120P+QJaKk7S+DPqQ2r4M83Hr4ouw+d l4MHjsqZ6t1ydcdaubdhtvy+cow82TlOHi37Uu5/0Flk2fcic9+TJyP7yuNh ZfL063J58nkp+h3l8dAiefJ2sjwdEifSN1qkazuRDi1EioNFCoC8lkCoSEWG PHmltzwcPlw2ff6DTJu9WlafuCxLD1DLjssy6M5iaCCfcx6ed+6OQ/rujE9n UGO3GW2eYXWX2+h36LsmORqwhf7Q2K0ZT8sT9WUmbnDsmd/WZWPrTWyhNrt2 j7YK9tfu0Thbcwgc48S+9Kuz8U10fBHPztt5VJ+bsa3GoRbU+7nYN3uH8Y/k 2WT7zObZzPOxr+9h/ToxWTXvgIk5thp/MG2LyR3Vf2+xnN5sxmGqxqiG31MV 5lwT5x9VDFcOGNv/bjltswr5tmm/RfvNkh3y9ZJtMmzhZvliIfizeIuC275e iu1LtyM33y7fw4Z/UOzUPq/7M2K6katp9+DVml3IW+rk53lb5J2f5smQL6fK 4C8mypvfTZGhY2bJj/NWw/fgu+DZf1q1A9zYrmNPLlD7J2012jIVYzN9E/Ou /ZpTzd9+QOZvI5Bf4ZjZmmsh76IGMT9G/LQeNrX/wEG5tXWlPJr4hTwc3FEu pEfJiXZtZJq3j4ydv1KWHbkkc/ch5kKstLT6tKwFX6r2n5SDdQfl/L6dcnvH Svl9/VR5uvA7kWkfikx5E3hHZPLbImMGy6Pxr8mdoZ3lUkmUPJzzFbjQWR6+ lSv3h2TL0/c7wNaz5Gm/VJEB6fKkW6z8XhAmv2a2lYvxzeVo+wCpbu0nO9v4 y8Ygb1nj10BWN3lJNge+KOuDGsgivxA5X1QpV0ZOlYN4z414nyV4VvqFqXhX w4UDrriT40QtnmB91jjGyRtNjDJuY42NWYytGduycQttWffvsz652tii9f16 7EajAeSJ8gO+cCT81i+rdsJv7pIxq3dhG/ord8jIlds1v/0Jfm8E8MuKbfIL fo9CrjsWx45avQPYKb/g2J8IfPcRuM5Ing8o9+Bvef3RVktGYht96ci1ZpvW C1QXDG9d+mI5NNXyYLLWWva7Y3KOl43bHU1ly1hpqq230H4+nbdRPpq9Tj6Y sVben7FGPpy1RvWE+HQeMHe9fDZvA/obZCj6n85ZL5/P3yhfLdoi34Af5NEP y8gx2LS+4y68L7BqN7Rml/r/kYilDp+8IJ+895kEBLSSf9T3k/94wU/+/Lyv /F9/95d/f6Gp/L1+sMSnFcm734+D9kPjYAcjMVb8Xvx+U5mvMC7Yd1Zmw5/P Row+d/85mQ8sOHBO5qGdBbueXX1GFiHeWVt3Qmr21cq1zavk94nfyoNXYbvJ YbInwEtW1fuHLHrxH7Lsxb/Kz8//GfqxVHYjTqrDc17evF0e7F4tj8EFmTdM ZOwQka+6ibxbBJ+fJdInRZ72SJAnfejfC+XxoGyRgZnyaEghfheJDMmXJxXQ hvIEeVSaIPfzo+RJl3Scky4Pi+PlZnacHGkTIlsD/GVJw0Yy56VGMvvFhjLr H/Vkxj8ayawXGsn8Br6yyNtPFjbykUX1fGRLA2+pa9xQjjb2lUNhibLx5U9k /vJ9subgecSWR1U750ArF8A3L9x9RH00fTNzMOrJrB3M4UxNZNKmWldMwnhl lPX9zCWZO2oftjcS+eMIblu/z3LK5J/jN3hoynon99xtuEF957mrqmQEOPDz csQhizfJ8CVbtP1+yUb5TtvN8uOybfLzCnLGxAmMGb7FNvpW2tCo1SanJTeI UdQlPssGxi30m3uVD+Md/0n9YA5CXbH6N95yZqytHTEm4/tzHKa6+GI0Z7rV Da3p7DSgxg1bvBVxFbVhs3zpaAO2fU/bB75TVGkN9zvohMZe0IYfqDXLtkIn +H479B2HK7APx38PXfke7Re43raDp6RPeTd57rnnpE2bdtIuOl3+2rC5/Pkf gfK//Vs9ee5//F2e+5fnsf/f0f+HxKYWyYjFG2QRbJ15POOemXjW1et3yp6Z M2XvjBmyb9oU2Td1olRPmgRMkeqpk6VmymQ5MH2qXJ4zS36b/LU8/byr3CuO kurAhrLwb3+SaX/5F5n2v56T6X97Tmb89TlZ8vxz8tO/PycDmzeT/f3elHOl neV6aaE87J8jT8GDRx3j1KYfZsfL/fQ4+PwUeZybIE/zYhD/pCmeFicgNgIP cqLlXjy0IzJa7kZEyt1wICJaHsRHy63ISDkbGiEHglpJbT1/2QmfsPl5f1mL 91/9UjNZ+IK/zP67n0z7e6CM/Ju/fPf3EPmiQRv5xCtUXm3YVjo930xy/rOZ xDdoLUHPt5B6L0VIcvGbUnvolJy7cVeOXLkrGw5f0HxkplPDAB/4zU0+gtgG mLPjsKnl4dvPBofmAHMR3xDzENcwnzM53Cn0T8oCm98t2G1qfqyrzd1x1HLu kImPHDD3oT+mb4bNTXP56YO6XesmzIssZ53a5BQb80x1+oynqIE21pmqeYCp K0y2NU/GRPT1zKm0rm7rO6oTWgeoVS6NZkzPdq3JB35ZbXRHdQj9EfDhI+jP qVuWh6MB1pQnbahWno1k/Wv1PsQ/++QntDpfsXyXDLf1rV9WmVxprJ1rMLWD OlN7U42t0Txj9Fp7nM37qeEjcb15GOvhw0dLvRcbSK+XX5feg96Vxs0T5E/1 W8i/1QuRP8FG/vU//eX/fN5P/vXvAfJ//MULPPkP+UeDQPl27EzNtydBw2ch F176zUhZUq+BrPTyl9UNfWV1fWjBCw1l5V9fktV//TvwvKz6n3+RlX/+syz/ j7/I+voNZGfz5lLVLFg2+PvKKq96srT+X2WZ9wuy3LuerPBpKOtahsia4GA5 HJsgJ1KS5XhMrBwPjZSrCYmIf1LkVkayXE+KlxuxkXI/BXwhTzJi5Ul2kjxJ j5VHydHyFNsvh4bL8YA2cjkoXC6HhMq1lhFyrXmYXEV7PjBMjsPO9+GdhwXH yZCYMukfWSIVYXlSFFMhpRm9pHvXt6Rnv/el+6Ch0uPN4dLz/VHSd+gYGfjN FBn4/UwZPHyGfDKDf1O3RLxxvldosQz8ZJR8PWaBLIGf5rqWczceyN4zN2T1 gTOuusRy2Pty5FAralljQ1wGjV2K/jJgRc0Z3b4CWswca8ne01r7mLfrhNaz nfoYdYixxixg+rbDmoNP2mLnh2z90akzTrHbp2gdvlZteqrDE+XIUeUsz+Mc lclHD5q5IxvbTNI6lKl3OXnrKM13TVw4wcZ842xe69Sqx7js1NbQOJegucdB rZGxTq25O2xztMaPNWb+jDVh1uHQav6udYgDikmsPWndgc97QGt1fI5RuO/I NeQe8mdcdxQwZsMBnTcch+uwJj0G/dFr6xSj1tcqRq5lrk3trpWf0Z8PvlcO HCQpA/pKm6hsee7fXjT4E3Tj373luf+7kTz3v9D+BfhTfQD7/if6z/1FmjZt LQuqamU4/34DecS0b8fLuL/5yS//CJGfvFrKL7DFMa3jZXRkioyMzZZxRV1k cf/XZMnrH8icIa/L2KxMmf9SgGxuHCjb/ZrJnqYtpLZFaznYtq2cSk6Wc/n5 crG0VC5m58hJ8OFkUpIcj46Vo+HRcjIuQS6mJssV4GpCnNygDsTGyJ24GLkV HSG/RkfKzbAIuQI9vBkWJWdyo+VY+zC53ipWbrSPk5uhcXIrLE6utwN3WibK 7aAoWd4ySaIKXpbEopelQ9+PJK3H+/J8u0Lp/eGPsuvir7L51E3ZcvqWbAa2 nrol207ekNrLv8mR649l56nbsuXoVdl96rpMXLxR2saVSquwzvLyJxPltWHj 5IOvJ8qytTvk2Lnrcv7OYzlw/TfZfuGu7LpyX7aduSWbDl+UDYjH1h44L6sO sPZ2RlYhJl0NrNlvtq8B1h50Yw2OW32A+8/JOvwm1h9Cu9/s0/3Yt6ruLIBr Ks/AP2BZDTl6RvVooZ0voi4txndciP783ZaDaMlJHscau/LXqcXvM/NLrJMs 2H1S552ocYvQ12ugr3NWrHWT01bzuG2+3hP328M6JvxBtXmeZdV8ttPaLq8x dXn6B9b2l+5znve41gxYF9RaKbeh5ZzZvJ3H4TMM5nFeC9tm7zSYBczcQX9y zBxj32++XgPvhuuz3sP5BNYiVh2+Il8MnyytwuPFJyND/gP2mVPSRRILKiSr rIe0SsyVtNKu0j4pR1rHZUpeZT/JquiL/Z0kJCJX/vTnv8nM5atl58mbUoXv vHPRepnQMFimjZokO6qPSNW+o7Kj5oRUH78ux68+kt1HkON8N1q+HDtdjh89 Jut/GSZz6jWVqoYhsrFRoFR5BUpdUHM50ba1nIoKk3MpiXI8KlqOhIXJSejG qdg4OQOcjo6R86mp4EeKXE5LlespKXITGnI9JkYutQ2Xq20j5Vyz9nKqaTs5 EwSNyEyQxyPS5E5prFxrES03wuPkTkSi4nZYvFxtDq4ERcuuZrFSlNNfEstf lz4vfy7vDpsiSXn9JTW3l+zZf1pOXHko1XjXPXzfY9dl//m7Mhv6PHHJdqlB f8fZO7IR+2rvikRl5Ml/Ii6tzHpFvpuyUKYs3SR93/tB8ju8Jv0rXpFverwu G4e8Lye++llqEW/tvXxfqs7flu3HLslOxGK7TlzBuF4FrskuYDdxyrR7T1+V PegTu3BMFY7ddvSSbMH4bjp6UTaCI2vBEfJhyb6TWm+m3+dcHWsx3yzebuo5 8zbL53M3y9A5G+Xj2evlw5lr5KMZq+Vj5LpDZ2+UYfO3yFcLtsr/Q9lbgFWV fm3j/qbLGrsAFUQxsFvsnjEm1Bl11LETFQXsIlRCESSVEBGQbqQ7VDBRUQxE 7I4J6/7u9eyDM//ve9/v/X96rWvH2Zxz9j4r7vU867mXUyy3cYXcL2Rumweb MObDwbwuJAM7w7OxKyIbOyOZ/zL33R3J3DcqF878G8Hv+xOZrwjOSSF2Sjul 5gMVntHhGhVvcss+1DtI/AtWdQq6fd1ckcwbhRXp5pSJIdV4uTquQDiPtfnh 67SHq0pE58X+4hQWvaHst2YuObRQi7M1Iu8TeeKqui6uVJtvk7hcWPUKZmOm Yt6Cxbh79zGWWW5AZEQ0MtNycOL4aSQnpiPI/wiCj4QjMjQa6Sm5iIlKQfih cPTqO4ExpDZ2u7jjwt0/kFf1BCUZxQgg7kqOTMbfAFav2YkFy9fj3pO3uERb 7N33O7Q1GYRWet3w3c/zcbrkEmLbdUWZUU+UtOuJs+174UKXXqhiXlA1oD+u 9emNy9374FLX3ijv2guV/Qejkq9dY1yoHjkKt4YOx02zIbhNm7k3bBiqibuq ug7AzY79UWHYE1cNe6Oq2yD8ZT8WrzeNwsM+Q/CkN3PwXsPxos8IvOo/Cs96 0l66DsSDzn3xwLA18tvpYfPAcZg0fh4G/rQK437bgOFT1+D3NY7Il5r4ey/4 3Ojvbz7DTupIq6Fz0HrY73AMSoRTQAJsHQ9h08a9GNVlAD5mPqffwBiruk6C XccRcDfqh3A9U6Q3b4+Cpq1xqklLFDRojpxuQ3B28x7cOFWBCw/+wvHbL5S+ F1XcR0HFPeRdFrmrpODKPRRdvYvjOvspVbbzQB0XXb2nXi9Q192nDd/Diau0 n6u0H+6rGHXptopFaWVVSGFcOUZJlvmi0yJarUGsLnaEE2uFEmsFM5cI+jCO q5uDl3qUHG0uTNUJqLGFszgs4/m52txaYLZWGyA1BIeVEO8REx3JvajGlGUe 3idDE7FdXzXXTpyTflarl5I5lkzBR1r90qEcrYboaGG50vMYxgbXY6fgcqwU +7h1TTmNfWlnsD/1jKqP2i/HKZKbEDMRQ3lTpGbKK1PwFLFV1gV+pmAyDXf5 Kuwl361c1QMklD3AyEkz0b9bd+xYZIER3YdBv6kBxlM/jA17YEC3oejX2QwD eg/DqH6j0Ym638OoM4z0TfFRw06o9WkT/Dx1OuPedRwhNj4mfBitTZF8KBT3 X72Gaa+x2O3qp+pBk44dx8d1DXHzzj1k5ZxGnebdkMN8PrWbGc617opS2sZ5 E9pB936MH4wXffvhRt8BuNZ3IK71pL534/lePO7F88RLt4mvbg0agsreA1HZ g6916o0rRr1wrW0fXG3dG9doG9da98WzRcxF9o7CI9rVU9PheN6TcYOY71Uf 7nfnOdrGM+YgTxg7qw3q4Unrprjf8guUGrVFQPdxMO83ATN/WIWBo+bhZ9rL 4ukWWDvTCht+tsDC3lOx3nQS9veYgn0tB+Bwy76IbdEHaY17IEuvB2bW04PV t8YoNxiACy16obxlN5QxxynR64xc4srMlsbIbmWM5IYtEVW7MTJNB+KslR0u Mkc9Kz6HOp1DnJVNfc4kVhJMpPCJ6C59Zgj93mHqi2BuwdeCtVUtnKrRkznu 8wqfy7zxUdH1IuYWRRXcF5/LLd8juKCc+J2SRwxPCeD1gfkyN0kfW6TNMUSc uK7hoxIt35G/FcykfLTgJCU3FEYTjCXYKbrkug7bCL66pvl1Hd6JOH5d4Z2o ExomEolR/l+H6aSWiPvy2cH8HkH8Xof4vZTkaiLfVba+2Rep9+eo/8yn5b6Z gwSoe9HuI0jVRl1R9x92nO95XPs+UYIB+Z2jlVxTWEswV/hxTSSGpVx6iMm/ LkQr4/aUbjDq2hddB45Cwx59MWXeSvQa/D0atemGWt8wF/lMxq8+V2Nctb5u hi/1eb5eW5iYdEEqc5DSe3/i5CnGufa9kRVwGMfPXUZ3xouAIzHwDwxHReVD fDd5HsxGTEG3HiPwy+8rcK3yLpJ7j8AN6mg5fXsF7eBqr764OWAQblKfZVvN +HBrIPHUoKG4yfhQ2Yu5RA8z3OjeHzd7muFqO8YYfpdyg+64atAT1wx64brY SPM+xF8DAY8RePETcZWRGTHUMLzoPgIvae8viKlemQ7GK9rIC8aY57Sv+22a 41H7TrjZthFutvoMLw17cSv4rycKO45Gnv5g5DftiVPU9csGjDeMhY9b98EL g95413EgXncaiOcdBuJuu/64xHPHW/VAdovuSG1BX6DXFXmtuiC3ZSfkK+mI PNpIfouOyG1lgnQ9Y8Q3bI6Y+k1Q0n0Aqqy3I+tQFBKoJymVz5XuJch8qOBw 4vQESgzxg/ym8vsfoi4E5l5StRJKh7iVnDZAp1cB9NviH310eakf9ciXvtIv V+QS/fcF5qPn4Ur845Z2lj73nBJPteUxddAt9TT2HDuJPUkl9Ncl9Nen4MFr PTPkOuonbdObvlm2Eg8OZml1WZJHi56LbYYVX9XZxXVlAzL+Fq+wv5aHyNyW YKI4XQ4keiu1GaLfUld6tFDDVWHFWj2gxJcA3ssRwUqqRuGKyi80ERxWoT5H y6EqVY6hfY6W68jnSc6h5R1a/iH5mPifxIsPsX3pOrgtXQw3q/WwX74c+213 4qdZ0zFn43rsc9oLi9WrMWb8GAwZNQxdu/XCV182wCef1MEnXzWl3bRCk5at kXT8DM4+fIPTFXeQRF0v8D4Ej+AETJ+zUo3ddOo1Ck+evsDEnxZj8NhfsXDZ ZuauE1FQch75Y6fiunEvXOzYD1dMmC/0NUNVX9oG7eV6t76oYFy5wtevmsi2 By637Und5Jb5f7l+V1zR744KHle07sG40ZO20RuVjBvVPfrjze4R+GvlEDwy ZnwwoX2YMH+nXTzrPJj5OPcZGx8TBz3o3A93jfl3bYxx28iUMagNymgrV4z5 fSjVjKW3idfum/TDoy5meGQ6iHnMIOYtffBo+CC8nDkCfywfh8dTh+EO49DV 9t1RZmiCky31aQcmyG/VGSdadcJpvS44S3xVQpsrbNme9tIeOS01yW3RHtmM z2l67ZD4bRMkf9sMhcuscWrfDhQHxyPt4iNEXLyP8BLN18aWanm12Eis7jfV 9KxS5RxSx5YoY17Ug1gdBhf/Ha707SrCuA07oeleKHVB4kUQ5VB+ubKbA9Rz L9F7+mUPYhZ3iofy0VJPcV6NAalxpWxtLMgn66yubrxU1XB4pJbAXXAPcw/n hOPMWwqwNSwXG0MzsZmy5ahINnYw99nBPGgr85gtPL8pJBMbgjOwiTnQlrBs bI/Ih31sEZySTtIeS4mnStV2v9Smp55Stik2KfHSP+eCiqcSV0MUNqxQ8ULs I1rVWvD5nLqpnpPkJrGllYx3lSo30eKIZpNyLPlNxtUnWGtpjzqff67km88+ Q916TdGQv+V/DDvhm/adUY8+rz7zg/r6HVG7fit89NE3+Ojzb/FlQyM0JF6o 17wDNrn6q/zJNSobsR3NkO/shqXE0936joa5pR2ate2PnbtcoGc0EFFxyXj6 8A98U88YB4PCUTJ5Ni41bo9Lbfsqvb+i9L87YwK31PlyfdoCpYJyheeu0i9f bU0cJRiKvvs6RXDU9TYDUGk4ALeMmIO0McPL5cRVdsPxuDfto9NQ5hjD8ITY 6mk/5hwDRuOp5OZmo/Fk0Ag8GUDMZTaCx/K6GZ70EDvogwfU9XsmnSkmuN/R BPc6tGdsMMI9Q0PcN2yD5yaG+Kt7e/zZrQ3+6toGTzu0wA2DBijXq43LevV5 Hw1xSa8eLujXx0W9xijTa8L7aYkrBm2ItVrjQuOWONNQD8ebt1O2kt3ciPGm HTKJudJatMWx5gZIa9MI6S1boXjyHJSEHENB+QMkMqeIot6Lbofrai3EP8u4 q/hsWdvgKfVA1NE9zJEd4gqwKyYfexKK1PyAzBkckLFYXV4crN5D872CuUKK Nf8rWE78uIwPCaaScVS/3DJlC+78DLfUUmL/k3DiZzgmFGJ3bAF2xuRS37M1 fQ9jzk/938kc3yG+GM5Jx1XccWPcEZEcwUfVAZ/XaoCzNT2X3F2+n0+m2JxW 3+tC+3Dk59jH5sGG+f8Ovvfm4BQdXrxGWyAm4v7hQsGc5YyllILL6lhwYmjx Fd0Y+FV1LyJhJzS8J/eXcEbyMOZjZdVqrC/94l1kld2C5ebdaMA4/xHjwn8+ rY1P6jVHXQNT1G7THV+07oiPa7dArS8aodZHX2v46j9f4RPax+ffNEadBi2J yQZi6Pe/wjkgFDnFp3HyhyHI3WULB48j6Ms8ZtT4mfiiPm3BNxgTJs6FYYcB 6DdoEnoP+gGXq5hHzlmGG8wbrncdiev07zc6DqYMwU3TYajqMoy5NrcmQ3HL hPl3+2G41Y75uPEg3G4/ELf5Xnfa98Vt5vZ36N/vtuuOO0bd1P6zEYPw55hh +LP/SPw1fCT+ZL7y59Ch+HOIGf42G4j3/foC/Xvifd9OeNfHGM9N2+NJ+7Z4 ZqSHp21b4nGbZnjCGPK4tWybqu2j1o25bcTXGuMZX3/ethleMF95xeuetW6C BwaNiNHq4qZBbVQa1EWVQX1ua+Oa/te079q40OpTnGn1Ec62qIUT7RuhiLHn xKgJONNe8pI2OEUfVNSyA3JatEFG87ZIbWaApMZ6iG+ih5jaDZHQoBnj7WQU 7jmAY1mnEV12G+HnbikbiTl+Rfk9FQ9UTn1R1QN7M1/enyY+9yRt5hR9rcSB 09Rv3Xwat/upg56MC17MpQ+oeKDhrsP0eUeKxPauqBooqS3yk3kKVbd+Vq1J 8snW9PhAljZfIXot8xei7wF5Zbqay0uqfjnihFaPKTm9qouVNRnZp7X1Ltk1 NShn1TzhPlUHdVKtVdoVW4id0fnYFpGFjSGpWBMQj6VeRzFvXwBcGZ/E5iVO OcUVKT9gG5UDm0jGpsgsbAuXWpNsONB2negf9khtPN9fPQs+B5kj9M/VasPk e8najagT5UimbYSkn4TVRnuYdjdDC8PuqNdCakraoHZTQ3zVqDVqfVwHLWgj zVoa4T+1PsInn36JL7+or3KQ+t82gHG3PgjLL0XS6YuYuWwDzrtb4fX2fkjb sRGPdGs3b3FnwZoduPviHc5cvYv1tq5Yu9UZ+bknceHESST+/CuqOvbAjd7M LboT43TrgVtde6G6aw9Um3bF3S7036YdcNfUCHc7GuBu+xa436kZHnZuioed qK+mjfDEtAGedK5PDFUX942+oXyLV/T3LzsZ4jmvf962idLf59Tlly0pPRrj 9iL6+iXNcWlFQxRbNES5VTO8NGmEZ/ot8MyQ9tG2BaU5nnD7hMfPDVvxfCu8 MNLHS6PWeGVowK0mTw318MiwOappR6V6zRjPmiq5YtAYV/i55QZNcNGgGS62 boFTjAdnmn2DnMEDEW65BaFW25A+oBvONqqF07SpMv12OEfMKHhMMFemfgcc a9UOCYwn0U31Efp1XUR8Ux/pzL9yLDYjJToL2VXPcaziAdLPV6mxroJrj5DP GJPD/azye8i4dBcpF+4g5eJtbm/TR95SIhhcMEUw/WpAgTZfF/hhvvyCmkOU Glv3tBK4JBPjSH0sY4NDVBYcY3IYjwqYixSqur8dYalYdygGKzyDsHDvAcx1 9MI8Jx8scTvEc8FY6R2GlT5hWO4VgkVuhzFvrx/mu/hhqTtfOxgNy8PJxF1p sI3Ipj1Ql2kXrvxcL6XDupplfh+xfVlDIJgyjhjSVebLxT5k3QhjzF6JZXGF fA/aSUwebSSb9pHzwT72in2kiN0V8Vy+qkvZxZi3M1rGp9NgF56CXVFpcIhM pa84hX2H42DapS8xUCc0o+9t0KoDvm1OO/lWH5/WaQ5DxocWBiZaXq7y84/x Td1v0Zl6PHuJBZz8ghF8jJjSzhn77XYia1R/RHw3ENmJYSg+4o0iv10oPuiA 6GVLkTtvFs4vmoELM76n72Qe380YJUbE+e0aodywPiqM6hCffI07+t/grkkz 3OncDPe70Sf3bISHfRrgYc/GxP3N8LhnUzztRf/dqyWe9WmJF/0o/fXxorce 7aQFHran3+/QXOGd58at8MrECH90Ig7qZIy/DdvjryntEbTLBA4re8LFwhQ7 lxuj2LUt3g40ZDwwxosO7fDMuB2eGhsqedKuDZ4YMba0M8TxNq1xz8gIL4mz 5LVnRoZqXPghr6mizaTT/ioYT64zxlQw1lwlxrrK7RXirqutuc+Yconx5ILe 5zjZ5GMUNa7FPOVTlLT8BCdacr/FJzjdyoC5iilOUQrqt0ZGndZIacr8vXFb RDU3xBH6L//aTXDw0zrwbtkO4YvWIDouDwEnr8A9sxQ+1OWAjBIczjml6uLC ZA2k1JiUCmbS1h3ItmauTnJRwVgy5nOAMaQGO4kuOYkeUXZR5+yi8yi5xDfZ sIsUPc7DbpkXod45Uy+lDnZPQj4cY3NgL3Xn4dQ3VX9OPx6RgW1h6dh2VGwg k/lIrqqTEn3em6zhLneZI2Esk7EEJVKzIvGnWKtV0epZZP3meQTLWkTuy1yi 5BVyL2Eyz1N4SY3FqTEJWZMhdb//nkfR1XB9GIM7WaHNN6q8o0LV8qj6Gqkx KLqAyNzTGDv6R5gSlxt27I96jB+NGEe+asD48UVdnV3Uwhdf1oaBoTF69uqN kWMm4Pufp+O7MZNh2qYj5s9fBq+QWAT4HsGdHTPwZP1QVFsOwUPLvnhO/Xu6 ojcuD+uCy6ZtkG/cAsXt9HF13AhUmvXFjT7Mq3szvxg6ACUTf0LkmO+RMm4C Y4kebaMhHvRujAd9aB89mjKPaI6HtJsnnenXu9HPd29Bm2iJl/1oKz2IcTrx nHFLPG1Hf8/PeGXcGn9Q/m5vhL/aM1foYIi/mXv/Nbg1Kvz1cdanBW4FNcOD ML5naAu8NmuLN/qGeNPBCG+p/+/at8e7Dh3wlts3xsZ4Tft4ZNgWfzD3+Iu2 8KptK7wkFnvJGPNHG8YXxozH+t/itl5dVOp9g2u0gWv6X+A67eGq/ufMn75k LvU5Lhh8jLP6tSj/Yaz4BOd5rqz1VzhDv3BS7zOU6DfFSQNiLf4Opd/PQtH4 uUho2RMRzL2CmndFQNMu8G3eEfubdYDtN82xjdh3j74xXGfMw7a9ntgURV8c nYYd1FUH5iH7BDsRA0nt3xGplZMaK1XnVaHy9Ug1vnpdjRWpcR+eP3pCG/8N lZqVIsndtbHfA9lnVV2kYCDJb/anaTot58W+VH2tYDLmMMHF2hj00WKZq9bG fGUcOLZEy4Ulb45UYwQVal47mNce0dWyy7izzN3VrKurWe8RmK+tWdLq80vV Ojmp+wwvlPXOZ1R9lqqnTMjDntgsSiZc4rLhkpAN18Q8uEvNZepxVbsp9TXB hdr6PanRUTVsOntJK7uJvPKbOFv9BCvXbCPGGoxWRj1Qt0lr5t3GaMa43qql Hjp26YX+ZsPRf9BQDBw6HOMnTGUO3xJfUmb164/EPh0wtWMnzOvWD5kDmbtO bYPbkyijGuPO6Ibc1kP14K9wZ3Bd3BnAnLVLPVzpVBc3iImudaqH69yvNPka N7o1RVlf5qczpqNwxi+40bkuY8hnjBm1GS/q0jbq4LEJpQtxVNdv8dT0Wzzr 2gAvelL6fIvnXRqpfOA5dfUFcZHIK+ruH5Q/iYv+Igb6u50e/mrNfcYepOoD Bc2BDO5ncZtG+xipj/fEMe87tAUYF9DOGNBvDQZQoE0bvCeuQrvWeG1M22iv hxcmrfC8E6WLAZ53ZSzp0QaPehjgTlcD3Oquj6qurVBlym2XNrhp0pp5FGNM R0Pc6sBjyvV2BrjK2HOD8ehmu3aopP1dNzTCdaMOuNauEy61aovrYyfg2uSf cNKwC04xlh9v1xm5bTsjR78tsvXbIELPEL5N9eD1VV14fvIpAnmctGoDEt19 Eed2EAmM72m0l+QS5vLEJKE6fxqUr9UsSe2TrK0LPa7lsEF8zY/Y6kDOOVXD JPhG8IvEkj2JmjgnnVA5uYoZ9P2Sd0uervKAlBNqDYWsR9qfoq1H8pLad5kz V2ustLlAjwzJ0U+otbTCe+CZdkpxJ6i1u1nn1Pyh4Dytbkzz+8qu1XrsCrUm OoKxTzhG0s9eRcqZK4g/eYm52Hm13tw//Ti8k/PgEpuBPTHp2BOdjr3x2bSb fFW3q9YwpRyHl9T7Z5Sqenup48wvv4Wyqkc4V/UAeRdvIqP8PrxDU9ClW390 7zcCjRm/69ZvjO8mTsHI0ZPQt99wqkYnfPLJZ6hTty56DhjOHL0uPmE+34/x pIQ6EdbsC2Ljz3CgizEcmtTFGWKGU61qocyoFso710KFaS1c61oLVzvWwg3j j3DD8D/EH7VQafQFqo3r4E67BqhuXQfVBl+iusXnqGr+MarbfcbXvsY9E+YT JrVxv30dxo66zDm+xeNOtJFODfCscyO86NYEL3s1Zn7N3KFdU+YJ9Oe0hVeU v5gb/K2TN9TFNxJL2jKmdNPDm0Q9oIS2kdsUKKR9lDbH619a4y2x/jvTdnjP mPPegNcN6oG3vwxhrt8Dz8264PmAznjSzxSP+3fFkz5difNM8aQ7902743n3 7nhKedSlG224J54yP3vapz+eM9d4PnIQXnxnhhc/DsGr6cPwau5ovFo0Fi+X jsdL8+/wh8Uk/LWWYjkJf1pNwh/WE/Fy7fd4smAQns0fhJfLR+PlkpF4sWgE hX+/djJeW0/GkxUTcXPeWDxZPgpPl43CY177cGZvPJ3TF68WDsEL8wl4zr+L GjUYVjsPYtexUmw/mokdxPmClxziCzU9V5wdxxXWcSZOclJ4ScM+LrL+iLHC LfWk2t+jG68S3CVblfcmadc78/rdxE07ie3tBddTBF/J+gtHXuek1i/RhmS9 OW3HLU17Xw8ee6ZqY8PuqZLvFKp8xyE6E/Zhx2BzJBabDoXB+mAw1ngfhoV3 ENYeCMaV249wTbhmhOdG+G+ES/PuE1ysfoyzlQ9x8prUE1Qj99ItZF+4iUzG hSxuM2SNBUWO88tv4zSvvcy/rbjzHMcrmK8xt0k+U6lq4I7feIzf566ESZc+ MO09DHqGpjDs0ANfftOMOXo9fP5FE3z8nzr4tlEjTP5lNj7/uik+/qg2vq7b HP49uhDntMKNjt/Cv3M7xBJvX2lXF+Xt6qGcufJl6n8Fjy+3/RoVhowTRvVw g/nyLfrg+5264FHXAXjceSAeduhF3e+Ph10G4G4HU9xuq898l9cZMP60rs39 OrjbtiEet2uFJ8Roj2hTD43r4UG7+vxb2g1jy8P29fHYkPbD6562bYxXRowf Rq0oeviTseNP8fu0lRcdib0cWuBPL8acHQ3w1Koe9asOHjG/edqkCV4wx/6z QV38udkcbzP98HL374jvboprhj0Yq/rjxaB+eDlkIP76biT+mjYerxf+hNcW 0/F242y8s52Dt84L8NZzCd4HrAKOrgFirICkzYxZ24F0WyBzN8WR+054n0JJ csS7BEe8j3fAuzgHbp2AhL2UPUDiPoorEMvjeBeKG9+P2wheE+mAF14b8HDT YjyyWYbq9XNwdcUUlMwdj/gJ/eHdrz22G7bAMoNmmEN7dWVunFB+V9Wwq7Fh 3Xp4wS2q5lywE/26+FVZO7EnPl+tI3KIzsLuiFTsjmTeGpWhdNYxVsaEcuAk eTr39yXmM384qXCXe+oJtaZin9gLbUWtzeD7ODGfd2I+76zs7oROjqscZ6fk yRRZ1yfr+LzSSnX8ITK2JetDSuCXfhK+qcU4kFqIg2nF8Ms8oXE0Kq5Oja9T yQfexD8VL+Htxy8VP+IN2k959SPFzXyu8gHjxENcoh2V3byHkiu0n7JrSCot R3xJOVIZj9IYlxJLLyPrSjUOEad1Mh2AXgNGwoRx3LjzABiZ9MM3Ddri89ot 8dEn9VCX8ePHab+hiV4n1KnXArU+bYDf2nXE82EjUdGrD27Td97v0Q83e/ZH VY8BxBgDUM33qu7eH7eIv2536Yvbpn1xp8sg3O86DA9FuphR6PM6DcXDzkPx oPNgPOg0hLbDazr0xm3mw3eY795p04x5sT7z4Lbcb0S7+Zp2Q9vRr40q4vub +nV5zHyeWOohY8U9w+a417YRHhg0wQP9RrjXqgEetGiMe80bopox7ua3dVBZ 9yvcqE+bbVQfVc0a8vOY2w9gfj7CFH/MHou/ziXgnZM5no/ph/RBtN850wAf CyBuM94nUt8zqO+51PcCO4oN93mcs5W6vxXv+dr7ZGu8i16Btwk78TbJHW/j XfEu3gPvEzwpHtR/TyDZG0jxof14arofTd0PdwCCbPHOdyNeeVjhwY5FqFo1 DRdmj0PxuH5I7muC0A6tcLB1C7i0bIbNTWgDdb/F5I8/RT/mip0o7Sld23bA hMnTsc7JmzlBGZIvyPzYRaSdv6Z4KzLLbiBb1vVT0i9Uqnp74ZoIL5Y1recV 5jhIvfRSmL4Irsz7ZQ2R6L+nrNGg7h5kTuMraypkPYhunbCslZb1S5LvxpRo PDQ1eW9o4SUdP8U/dfeBzLP9hItCty7DR63L0OraJb+WXClK5mGkfvdMFeLP ViGOvj2GePG1jgfy9dsaPkhNFP+cjnNQeEeFI/mR8Nc+EU60Z4rD9CbtRbiW 885eQUzBaYRkHsfh9Hz4p+TAOzEdHnEpcIuhxKYgovgUVlnaoEdPMwwdOYl5 x0CY0K8bGvdGvWbGjBnN8HVt2gfjh2GHvvimdgvUbaiPtg1boYz28Yj5SWW/ YbjZewiqpAakO7fdhuBm18HMtQfjZg8edx/Kc8zduw6lnQxGdScz3O44CHdM zHCnPbcdzFDdQeY1BuEu7eOuvNa+D+4wL6pua4pqw86oNuqEW5Tqdl1xr30v 3OtIm+zYg7bVl3iGOIR2+UfPfpQ+eNWrK14N6ImXg3vg5dDueDWuL17+MBgv ZhDjLBmDv7b+iL9dZ+Hvw8vwJnIlddkC76KsqfsbgWw7vMlzwZvkbXibug1v UjbgbdoWvM/agXcZ2/A+jTaSvIl+fzOFx4n21HXGhFTqdzp1PduXOQ19fjol 5yBthjaQth84xtdjdgEhW/DywBrcc1yEyk2zULZ0Mkr4vfLG90B837YIM26E oJb1sL/Bl7D/6hNs+OJjLK9dBwubtcLcDl0wo99Q/DZxJn76bhoa1PoITWgP XRo2wYiBIzBr8RpYuvnBLpI+nxjcNjoV1n5HsczdD8vd/bHM4xCWU5a5+WOp qx/FF4tcfDDXyQO/O7ph1u69mG7vhJn2ezBjpwum2zlh2nY7/LxpG35cvxk/ bdiCHzdsxc+bd+DXbfaYaeOI2btcMG+PJ5bsD8Aa3whsDk4ipsqAU3yuwkoe xFDCTSBjtCE185EnLn+YEwk9TrspvqTG0UIVP4W2lkzWusczX048Q9+uuG00 3JOoalCuaVzHOm7Q9/8b93HNa8IX+vqdZjd/Ul79/VZxNT54+lLxDV6/+xgV 1Q9VT5WSK1UovHAdueeuKs72lJKLSCw+h+TSC0jjduHCNZj6yzyMnzgdPXqN gAkxT6s2XVG7jh6+/OpbzJi3DMNGTEb9+vpo2MBAzakf6DMQr4aNxtU+ZrjV hzbRc5CyiRvdBuNaNzNUUG+vdKWYDsLVbtr5650H4ZrJAFynPVxtNwBXjSht B6CiDbeGA3GD527RTm53pO10HMiYIuuZBhLPD8Kr/kPwx4Ah+GvwYLwePgRv xg/H2x9H4M2MkXizaAzerpmI99t/wfu9c/HedzneB9PnU++RQL1PoX9P30F/ T79/cifeFdvhfT51Po+SzfNiA9R9JK2nEBelcz99C/Wb2yz+bdZ2TTIZM/Jo B0UBeJ/nS5vxxttkN9qZI14GbMejfRa4u2MBrq/5FWXzx6Hkx0HIH9kdKf3a Iao9db/5l/Cu+ymcPvsIOz+uhW3/qYX1n/wHlrW/xOrGDbDCyBhLe5th0Zgp mP/bMixavR2Ltrthvr0nftvhQv3cje+sdmAMbWH0pGnY6uiJ4LTjiD99FfHE 19GnrtI3S/3TSYVHPFILKLJmthDuxwrUdn8yc9WEXDjHZGIn8ZOM/zsyj3Vh Hrs/MQ9eKUXwTj0OT8YOd+a0+5OEF6RI8XTsPybvVaDWq3vzdR+1vl3mK0pV vPEiFvJS69JLmZcLt0mptl5eeIooMq8iciBL6t5lrfcJuKdLXCpV661k3bAa K8uS9YElak2srI91kTW+iQUqlkkc07hQ/8VtrP5Dx138j3281fHmanzetJPX 73T8968Vn6mKL891/KXEY8L1XK3j56xknLly8z5uPnqJrNwSbNzsiI1bHLF0 qTWmTJ2LESN/QAeTPmjQyBCjxv+Efv2Ho1s3xpbWJqj9bUvM79ITj8d8hxv9 R+A67eMaY1BFdzOUdzXDRcah86b9cI66XWY6EJfo58s79cGVzv1xla9VdByA Sm7v9ByIRwOYvw6m3g81w5/D+uPV8EH4c+xg/DlxKP6eMgyvZ1H/F4/Gu9Xf 4+2mKXi/czre0/+/D1iEd6HmeBezFu+SNuAd9ftd5jbquw3FFu9zaAO59tRj +vh8+u48Sr69JnnU8xzBRjs+6P77tK14m7gBf8Wuw6twK7w4vApPfJbizt55 qLSdgQrrn3Bm6TgUMM/O/q4vUgaZIKpLK4QYNEJgw29woPYncP+sFvZ9VAtO 9Os7qfvbP/oPtn36GTZ98zXWUf8tiRvXdOsNi5FjsXraLJgvtoC5tR1W2Hpg yR5fLHQ9gkUeR7HY6yjmuxyij3bFFGsbTFphjYlL1mDuJjtsZ37qQ/2MIuYI J/aQ8X6vjJPUnULqUT72Usf3xAum18QxLge76NN3M39wjs/BvuQCxbkgunhI V2eijf1extGTl9V+6PFyNecQmCdzdLKeXdZ0ZMMtLhWu0clwjojHrtAo2B2J wPZDodgcEIx1fkGwPHAYVj5BWH8wBBv9j2K9fyisfEOwxicYK1wP8h4Za/Z6 YeFeTyx28cJibhft8VCy0MkdCxjH5uxyxSz7ffhtlxum73LHDPqA2Xv9MM/1 EBZ6HMGKA2H/I7fwu3/FkXfKTvAvLmEev8UHbPYPN/RbxXf/8l+c0C+kZ4Tw pf7xBnl5pQgIjISnZxB2bHfG5o07YWmxGePHTkVnYq76zMvHff8jjoZHo5Nx dwwmvikbPxF3B4/G5f4jcaXvMFwmzirvMxiXibku9x2By32Go4LHN4aNwq0J P+L++PF4MnQQsf0gPBvfH8+mDcVd2sDliYNwcmQ3XJs1EG+cp+Gt+2y89Z2P d8FL8TZiFfG7Fd6lrKcNbCLWIa4R/C96XrCTvpx5bzGxe5GTTmSfmKeA22za B33+30lb8ZI6/4w6/8BrCaoc5uDaxl9wceVElMwbjrwp/ZE5ujuS+hkjoos+ DrdugoNNasO99mdw/rQWHETfKXaUHZTtsqUdbPvyM2ypXwcbmjWGtaE+rEw7 wmLAQKwa+x1WTZuJlQtXYLXldlhQzy1cD8PSNwaWgcdgGZSsthYBCcQ/IVjA +DDP3gPz7dwwc9Nu/MjnPnGZJSausMKv62ywyuUA9tLXCzdfOHFHKHVZ1lYo Dgjh3Tqp1aCHFGtrNoQzSniAhKPKg/7WVeXdtJe4XOyKyYI9Y4d9VDq2Bydg fUAEdTgMltRpy4NBsDp4BOt8qe++sg3CmoOBWOHhTf11xmxbG0zfvB5T1llh 6voNmLZpC6Zts8NMWyfM2b0f8/b6YLFrIJZQj5d5Bqt58+XeYVjuE4ZlPrqt dyj3ift8QrXXeZ2552GYE6OZ04aW025WEvetIla0IB60PHAEG/wjsZXfdVtI EjYfjvu/cG7/0xfi3b9iyf9/0Wyohq/9jcSeN2/V/nPGmPPny1FUeBoJ8ek4 RNuPCIlBcGAEtm6wx+Txv+D7MZNw9kI5NltuhX6ztgid8AOeTZqM60NHo9KM uGjYYDwcPhj3R/THTTPmGkPMcG/SKDzavBjPd63AHzaz8ffWCXhuOwtZKxfB 0qgLVjUwgjlznY1duyGDGOldJjFONjFNDn17Pu0gT0Tn8zN57tg2gHny6+h1 eHFkNR77LME9Yqobtr/iktUklC0ZjdOzBqFgcjekjTBBUl9DRHemn2/bEIFN xM9/ij06nben2Oq2Nfpv90kt2HxNvW9AvW/RBOvbtcF6086wHtAPliNHYM3k iVgzYyZWLVgC85XWWLHeBittXGCxJwBrvcOp90lYdzQTm6RWj9v1Ygu+UVjt fgRL9xzAfFsXzObz/GXVBoz87XdMXmqBRbZ7MWujPX4wt8QU83WYt8Ue1vv9 sCcsGX7EHyHMf4Xz7WCWjIcWqfF773SNU6eGw8CT2Eawh9iDzEEIJ4eMobrz vCvPuRwrVlwke5OkbjAXOyLSsfFwLCz9aBu+R7GWYkE7sfDlPYi9cLv+UBQ2 HIlnXhGPHUeTsVNyi1htPsFdeD+EhyrlpDZnyM9yk89OK1HiqjvvkaZx5qjx rWT+DfGSm+IZyYcL7XUv309JfI6ah98nOE7VjWk4Te5TxgcEY4l9O0Zn/4Ov 8P7/6JXyb3kHTf7n3hP/+hsdF31NPwnhpP/7b8aSl6/wWPjOb99HVdVtlJdX 4PjxUzh7+jyKso8jMigG9tbbEXooCJfOnEd4fAouHY3CH+ZT8XTHbDzdtQQv nJbhTxdz/Om6DK/2LcDfe2firds0vA+cC4QvAuJXEutb4X28Ne4f2YiSnb/j gu1s3HJdgBdBS5m/muOFzwI83Dcbd+1+xdWNk3Fu5VgUzx2C3B97I2VkR8T1 a40o0+YIbtcIvi3qwZu5rMfXn8CF2MbpPxq22UNx1Om9sgH6epsv6fPrfYFt TetjnUFLrO3YAWt798CaIYNh8d14WPw8BSuprysXLseKVdZYvm47lm91wLJd +7HCxZe+7Ah1KQIbAmOpL8nYFpqCHRSb4GOwCUzA1oORWOd2CKsdPbB0hwPm bdiG31avxy/L1uCHBSswbtY8DJ36C/pPmIgeY8ejz4QJGPXzVFgwH16/7wB+ s96Klc4ecI1KRVhhmeIMPnahGrHMUYX7JChPW48nnFe+Oh4gwf2C4d1SZP6i kLEhR+mwbXg6bMLSYBdBXBWVBQeel61dWArsqOf2RxNhG5oAO4pNcBwlVh3v CEmkn07ElqBY4qNwWEtM8SZmomw4GIotgdGw5d86RKbBKUbeN5O4jZ8hWx7v juY5GQOOz8eu+ALYx+aqOZCt/D7rgyVmxmNtQAzW+EVT6DNoh+Y+RxhHDmOZ RxCWuB/GUrcgLPVk/PGW2BOCpYwxC92DMN/tMIU+hvFI66/wTvUNelcj7979 P9nBf2cT/4eoniJvaCN/4y/hnv/jT7x8+QLPn7/Ak6fPUE1bOXfqHC6cLsOp nCJcL7/Mv3mjbPgNc5nXHvT3h6n34cxlg825XQ1Eb6IdEN/kuHHrglfENPdt p6Jq/Y+4bP49zswbhVPT+6N0Wj9kj++GeDNjHDXVh79BY3g2qwu3Bl9j3zfE Np//B7s/1bB8ja8XfLODx9uY3278ohY2EANZN6qNdXpNYGXcFmu6m2LNgP5Y PWo0zCf9iOXTf8OyhUuxfKUllq3biqXbdmE58e1KZx+sJKZd7RmCtYz76+jj 1/nHEG/EqHi+wS8cmw6EYpMX8bS7P9YR41gSH6+2c8LSzTZYsHYDZq5YjSmM I5N+n4dxjCnDpk6F2Q8/of/ECeg1bhx6jB6NHqNGoufYsRg4eTLGzv4d0yys MW+nEzYQu7jEptGP5qg6CJ+0YsWbJGOywjV2lHn20cILiCopV+M4xxRvwQ3a zQ0kcBt/RtZMX9dxuFYg9pSsd7iKGNkv0TgPhR9Y1qELr4HGCSTbK6o2Q7h/ ok+UI67kspLYk+WIPSH83VLLegmRxRdpp7IuVvishMP5pOLPclc5fiFjRwH9 fS5cGAfcFLemFtcU57PwdAo/uo6fS+xZ8m/vDB2nF0XmXKQG0pVxRzgPHWLz aEtZ2E5b2nz0GDYQS61j7FoXFAdr+iTrwBhYE1utY8yrGd+VfjNv/6XL/282 8d/Yw38hb+VzdHZSYyuavfyJP169wivGlhfPnuPJg4d4+fy5Ov83z71mPvO2 tBjvEgPxJtgRr/czdhxYg+ch9rgf4Ypb0e54fDwRpyxXIUBfHz76BtjfoBFc 6jWAw9d1YPvlF7Bh/rrjs8+x/asvYVO3NmwbfgvbZk2xQ68ldhi2wRb6+Y09 e2DDIDNYjxqLtZN/hvmM2Vg2fxmWLrfEkrXbsHjLLiy224elTt7MA/2xiv5m LX2P9cEwWPtGKF+4mfhhE33VBo8AWLkdhKWzJ1ba78Wy7buxYONW/L5mA34z t8CUxeaYNGc+vpvxG0bR3w/56ScMnDQJA76bgH5jx6HP2DHoPmYUeo4Zjb7j x8GMtjDsxx/w/a/T8OO8ufhtxUostN6AFTt2Yx3xtA3x6b64DOYCJ+Cffw5+ BefhlS21gEXMCbLpc9OwNyEL+5OEo03qhXKYC1OS8lTO7Ua9c0sRvjPm3XHC 5ZbDa2rqJaTWT8vJ1TFjiOTe3pklKvfQOHzPKy4E4dw9pHixa7iiNV5njYNf jnU80MJvLriNuiuctN6i88RGwifrIfZRw6vI7+WSWKDwmov67AJlIx6qfuOE Et/MUlXP7q/4ZzX+OH/Fh35aYSeZDxTxIB50kXl5FW8ysJ2xb2toKjYzPm89 mood4Ro/otTbSoz8+/VryhvVn0n09r/S6X9s4d3/YBNvP+j/f/de/zeb0f5G t6/6Wr1W8pb28/bvv/DuD9pPdRUenD2FyrwsnE5LQ3ZCLFIijyI2OABlF8+g 1M0Nh4YOxRFiGE/qmAtl56hR2DJ6LNZ9PxHWU36B1ZxFsF62Fusst8B6006s s3PBOmdvYhY/rGO83UAfv/5gONYdCMMaxmILj8OwIJ5ZtdcXqxx1uk6dXLhp B+ZYbsQM+vafFy7GhDn07b/OwIiffsaQSRPRn3rel/68D3W8L3W835gxMBs/ FsMmTsSYn3/GpN9mYvq8Bfh9xQosXLMG5uvWY9U2W1jvdMSGPW7Y5n4Att6H sPtQKFwjkuCfnIuwnFI15yqc8Vnld5F++T4SL9xBzLlbiD1XhbizMselccgo rhwd386xc5WqJi61rBLJ5ytVrXo6j4W3W3jqk0/LWlThJbiI8OIL9OkXFPaS WtZAtW7i9Aeufz8dF7/iP6vhHM/WxlU1nsWzH3ioariyAnO1+UCF14SXXOb+ lO6e1vH+lypetoAsjbdXuA59db0BNA7Fk4rXUeKGcJAKJ6mXTuR16RdwMFti RumH6zzF3lTvAB3no4671z/33Id+GCIa99V5xSXtr+P4lfvzoY2JD/9Hl/9r vf+3/r55q/n91yLU3X/L3/8+1sWH/z1e/Pu9PnyuDtf9M8YM1STv/9sr750S 1WeN7//y1Us8fnAfd2/ewN3Ka7h1vRxPHt3HtbILSIlOQFh0IrxDY7DvSAwc DsfAjjHTlvFSxC4oHvaMp/bEuDb+YdjqHYx1++jndxP/E88vJjaatcIS0xau wrRFq/Dz3GWYOHsRxs6ci1HTZ2P4tOkYMY128MtsjJ85Bz/8voDXLqWdWGCx FXV8qx027naGnas3nA4cgvuRcPhFJiAkKQtRmYVILDqD1JJLyDl/DTkXK5F3 +RYKKm6j4OpdFFx7gPzrj5B/Q+Sh2uZxm1VxH8cu3maOcEOtg5a6CG/Jg4nF dzCntfYNwUo34rg9+5lve2HTwUPYfigYTuGx8ErMRmDmSWKoc4p/VLCTcFdl C2fPtYcovv4YxZVPUEjJ534uz2VXPELGlXtIvXSXucltxDNHqVk/KzyvUjPi p2oMNX5cxZur01M/JSXwZb7vI/UaGSeVXcl6D6kDlLnuaOktoauHF6ymeBx1 vU6E70H1ZtD1efFT/WVKVe2sj9L7Eu09s0oQSAnOPa363BwtFI5yTZSNn7hI nHcZ8fycZOHyP3dd9WgRfCjYMLLkijbGrOPBltpjGW8+quPBl/n49+/earon 23c12/dqX3z5u7fvlLxV+6LnrzVdF9/+5l+i8/WaDbxR16rY807T6/+nfyo+ 8T34viLvuQ/p34f/+X3+5ueVnr+EI9RHFy8/bN7lhNWbthIbrcPvy1Ziytx5 mEgfP+bHnzD4+wnoT7/ec/hQmA4ehPbMJQyYRzfr1hENTdqgEaWJqREadmqj pFn39mg7sA86MR6YTfkJk+fPx++Wa5gn2GDT3j3YdcAbLkGB8IqgPcREIyAu Hn4Un+houIaGwCHAF9s93GG1xxErbImz1lng52XzmStMw/BfJmPA5JHEU33R ZVgPmAzuSGmPzkM7ouuwTug2sgtzjO7EWpSxvdB7fH/0+34Q+k4wQ/dx/WAy 3BRtBhpDr0crtOzWDPo99WDYpw3aD+oA01G8/nszDPxxOO17PH6Y9wumrViA WVbmWLR5HcztGLOcHbF5nyu2uu7HJm437nPHVs+DsGfu4hBwFLvpR2yYQ2/2 DoK1qy/W7PHCcgcPLHFwJ9b0whLng1i41w8L9wWotUkzd3ngl+0umLLVCTNt XTHX2RfLPYJhxbxry5Fk2BDH7IzUrYOKy1fzgt4pJ1Xc0NbaadyoMqYsa0hi dOtwZav6oJRoaytk/lu4h8U2ghWf7nklUr8ifU0O6Pit3VNOaDUsSVrdl/Qp 2MUc3z5aOKZlrXqqykM2BjMXORRLicZG5iAVN2/hOvPiyuo7qLp9F1V37im5 Ram+dx937j/EnXuU+4+5pdx/hHsPH+O+yKOneKDkMR4+foxHT57g8eNnSh49 foKHPP9IySOee4SHDx9Q7uH+/Tu4d+cO7t6+hdu3KlFF/3+t4jLKL5XhYtlZ nCo9gaLCfGSmpyEpJgYxQYcRfdAH8e5uSNnnjAy3vcjevxe5bntQ6OmKYl8v FAX6IpfXhbq6YdeadbCcvwLmsxdj6cwFWDR9LhZPnYVFk6diwfc/UCZh/rjv 8DvxzpyRI/Hb0CGYPtgMvwzqj5/79cSkXl0xsWcnjO9mjFFdWmOYiT4GddDD AJNWMOuojyGdWmN45zYYTdsZ28ME43t1wfd9umByH1NM6muKyf0648cBpviB 8uOALvihX0e+X3uM62aEkV3aYBjfc3BnffRv3wzd236LTgZ10Z5iZFAbrfW+ hl6rz9Gi5edo3OJT1G9eC3Wa1cJXTWvha26/4XG95h+jYavP0NDgSzQ2+BrN 29ZFq3YNoGfcBK3bN0drk5bQ79gSbToboE2XtmjTVZO2vB9D2nib7h3QpldH tOX3Ne7fE52GDIDpiKHoxXxnwKQfMHTKdIyZOR/jfl+O8XNXYuIiK/y4cit+ ttqJXzbuwcwtrphl64Xfdh7ELAd/zHEOwgLXMCzzlHGiBKz2S8Bynzgs9YrB Mu9YrPCKxjKvSCz3ioK5TzTMvaPV/jKPCEoYVnpFwPJANNb5xmL9oURsPHIM W0JSsZ06a0c7Ev0VW9otPThoT7tihCs9G7bhmYpzbhNzhw38G+vDSbA6nKzW Cq7hvgXfyyIgEasPJaj5n7WBSVgfzFwjjH8XrtX8yto+B5E4TXbHyrgcbSYi jblIKuIYexJoiymMO8dOX0Uq45Dqx3lWenNWIov4NJeYNe9iFfKV3ESBEun1 fVN7TfpuynUU6ceZzvdJYmyLyDmNIMbXw8fycYj5oG9UCjyDo+Hkcxg2+3yI QfbB2tYRa7ftgsWWnVi93QFrbRyxcos9Vm+2h7WNCzbbucLOdh+ctjnBfaM9 PJkzeK1eD29zS3gtWQ2fxStxYIk5vJeuwr5F5rCZuxSbaRfbf1+G7XPNYbfA HPbzl2P7rEXY8dsC7Ji1EHZ8bRftx2Hhajgvs8Ze883YZ2GD/VZ2cN+wGx6b neG5zQUeNm7wpB/03O0NL+cD8GT+4bnXH+6yLtn1ECUQ+7i/z8UfLjy/1+kA 9u72xB5+5738vs4b7eBkvQ2OzMcdVqzBzoUrYEucZjtjLmymz4LtrzOx9cdp sGKesmr0aCynrS4fMRwrhg2D+agRWDF6DFaO/Q7mfH3FhB+w6qdfsHrabKye sQCr5yzBKt7f6oUWWLPUGpbLNsKa97HWfBPWrFiHVcutsXSJNRYtWYcFPL9g 1TYsWGOLRdYOWLJlL5bauMN8ty8sXYktPSOw6UAstvonYFtgMmypQ7ZHMyiZ 2BHCHDYkQx3vDJex21wd72GhxnkovAgJJ1TfMi/ph5hzQXEXHMoT/oIr3F5h nl4OvzzhLblEnFRGf35O9aD0OFaqSUoJXBOOwyVeanJL1NpC4TWR3pTCGSL8 Oqr/k673jeIVytb6+gjGO6Dy/FO63KREiY/0SlTjBmcVFpT+dJGqn9hVjetH OEbPVSoOyFTmcqmKx+7mh7or4W4PVXNB5apX1OG8C7r+QOe0HlXZMgZOzMic RePjphAPqn3dOZlTlW1ovsYvLH0spRePcFu4Kt6VYtp8Hu0zX/Gv7JT1k1E5 sOUztuexHZ+zLcVe1vPyOe+KK8ZOkRhZB1/A2FsIB76+m/btGFugZGd0Lm07 G9tCU7EpMBHr/WJg5aPl0avcmUN7BHJ7GGvd+bt7hGCDVwg2egZjs2cIbA6E w/5gJBwOxMCZPs71cBo8w3LhFVUAb36uV/wJePC33hdbhD1R1AHqg0OY1F7T z0RK7USOWnNgz9hsG58He/qaXbG5qrZ6b3whXBOPK94Z4eU+qHqanlN9Rr2T +XslEp/zfX14X758DocoR2LzERKRhUDqoz99nK9/NA4ejIAv78f/AIXf9ZBf LAL9KYHxCDiciIOHkuAVlMLcKg3e1Fkv+kJPfkcvflcfPitvPh+f6Gx40efu CTnG3CsRu48kKdkZlACbQ3HYIXPEfpHYHBCBLYcisdGf9sH9zYFRfKYxCles D4zDRoo1r7cMiMMa3xhYyJw89zcEp2i8BPJcogWrFMCZIuNCHsRIwvOp1s8p rkPBO5IPS458RvUNVf1B0o6rMVzJT6RPiPRCcJOxqcQCNSfomqD1Q3CleEoO o3ojaT16/HU6qvqn5dVwTp9ROb+sk5L8xJW52R7pS8Bnoa3xSMF23v9633Dq SwisDoRg/cEw3ncU7ztWd8+xsOZvYOkXhbUyZ8LfQq1F4e+0U377SOE5zVFx y47xxz5CG+dyll4f8YLbClS9vTpOKFS9DcT2vVTPwX94tKWPhKeseYkvgrOs W6d9OMpaGdqFvL+9kjy1pn13jCY7xYZi89Xad4f4IrV+XvoqCDf1foorP2+f rCfmdXul3l84JKgfmxhH1/nxnqhPFl6hsPDmvfO+tgQlwiZM5qxyFFerK/XT Q3wccahvWqnqjyr9eo7ma1ysoQXMDYULT/oNybiL6hdLPdfdiyvvX7Cy8ARs CUmhHINNSDJ2EQM4RmbAic/KKSIDzozNzozbzrSjffzc/QkF8OB9uCdrPYNc Eop02JfPOTIdNpGyhjpd4WD7WD7zuFwlNjzeyhi/hTF+a3gar8tU67JtosVG 6Wcosm/L30nuc/tRXhOWrrb24bxv6dMSIXqRpr7n1iMyF5eALdSDDbQNq4Ph sPAJVfVKFl70LZ6HsYrbNfQhVtQRGe+04/sLd4+sbZL1e27CD5UmcwmnFN+/ t+LsFz6RcxpXZ7rMuQv3fzHvs1DNUe9XfXGKVA9Yd7EB6v3emAw4RhyDfUgi 7IJpr4ejsIX2ucEvjN8rhN/nMMzdfDHfYR+mb9+NX7ftxgwbZ/zu5Iklrv4w l9/ZNwqW9BvrAhOwjj7Akv5FeEdW+9KW/Sj+8bDgdjX9i8gq2vZqEfqcVQci sNonnHYQQ5tIxGb+ntv5zGTNu/hiwVz29DO2/C2lV6fwtMuaRNUnLrdMcRD5 C7e78CcKB0uhjiNSeCGpR8EihZfV+RruPOHVE85EiUUSC4Un2PMYn6XiwDul 1saLeIgwtu6XHs/CCZZ+Ru0LV55wnO7nOeEv9cpiHM7me+XJenjGuEKNN0nj x9bxZyveOo0XO+mM8GMKD/ctpJ27RWx4C5nnbyOr7A5yLt5WvTKzL9yhcJ/n RLLKbvOaaqTz2lT+bbJw3zH/E35wia9HCy8pDliJ1V4S86XXqfBTqP4muvqF BKk95e9PnfCk/vvQ/gJoU0FZZxHK5xjFPDOGzy2Gz0X2I6R3BV87TH94iNce SMiDB/XFJSIFjsEJ2CXja4HR9PER2ObLnJh5on1QPByo4/toh/sZs7wSC3GQ +ir2Kz2qj/I9pfdtNJ9N7IkKxFHiS64RN1/jlvdz8h/ON+lhIGO/ccIhXlKp eDBlG0kJO3mDz/c6n/NV9bwP83cWbOSfe0nxIYocFF7ELI2zzVf6z+p6AAg/ j9SNSy4tc4nCa5BC3JJ+kb/DpWpklUt/OpG7yLuicf7mXr6rzmfx98m8dFtx wUu/hYQzN9SaDq1370WFW46oHknnFf+uSNC/ekPV9IX60OdG9bjRxsOkl5tg qtgSjWtLuNukjj3prDbnqfqeqmu0/pbCE6T1apReB9TbpJP0cdpvvF+JhhEE I8naYF/pWyg6WqBxjQoPnqwjjhR+Pen7qvjhhY/4NjLkPoX3is8gs/wOn80d pJRVI1H6sfJ7hZ+4rjjngvjc/XMvKl46r0yNQ0/4Iz1VL4UyhTlrOFqFc0s4 U+NKNf75FD6/VEoaJeO8rF+sQtaFW0pyLlZT/2WdFu2Dv02KjPuflrH966rG P47vE690RuN11Tj1dbz6PE4U/dHpVYJcy+cVz+ecQEnic0zi8TE+6zT+neRr SbJugMdJlORS5m/Sa4P2mqR08ir19Yrqfx4l/dCFn1L4bYRLRvpK0h8FZmn9 lrXe1xq/+BHqmqzhPlp0RfG0Cp++fFe5h/SzlZrd8/6yz99CLu81j88890K1 Os7k88g4V6XuPfPfx+ek9672vOS1dJ5LP697fufl2VUprrKsMu31VB3/v+iT cNXKbxCi4zPQegVfVpxxmi1o6yXkd8mQ73VR9L1a2ULBlTs6rut7Or74e0qK rt5Rr+XxmuxLGvevrEXV5mOq1FxN3CmtJ4+Mvyq+wpo17blaf2/VR1PXQ9cv R+uxGZitW1P+r/6gqp+96tmj9dQR/Zf5fckx5P5kW9PPQH2erv+v5B5iJ5YH JNZGKtwleHMzcckOxhvJ4Z3i81VNmHd6zVz9GV1PZ60Po8KEqqdWTV/GU2qO x4/7Aarvu7x+UvWo03o+n1a9rlX/H7UOXteL9pTWF0Lms7Q+DVoviXT5vUT3 Vd+KW6rPctIpjVNV7lO4wWSOVnCp8HG5qd7WxxnXixV2syMWE25JG2I7e4Xf iJHiNawgPYFknb48T9FH5X/5m8fQB8fT3yYpG7iB1NOyvc6t1vf5GO0ijd8z TfzjGY2TPE74yKXnA39H6Qcpv5VwhHvoOCpl7bN76inFQ+DCvGyP5GaJIifg lHBCnRO84qO4LM8qjkLxH/6Kz+OC4rT1V71eynU+qlzrJVxwWcVz8SVa78mL yr5Uz8ma/rLi32WdnGBG8f18fy/eu5uOG80xrohYIg9bj2Zh0xHmdCFpxBvp 3AoHZzo28njr0UyVOzoRM0mPSsHVspZb5txkLZ/UmIg9pYiOqz4ht1SfEJGM i1oPkVS+Jn175HeUmCLc7sJRKmO20sdK6wV18UNfwGCl2+dUbz3VI0f41lSN pPSC0nqiq166ur7Twssg54WDQXE0ZGp43zdD6+Hkp/ND0pPnSIGMG0u/kErE nKLvPl2FGJ1EnbqJ8NIbjKVaPw/JB7YeTceGoGOwkvEw4rYVPtFY6hWBxe5h WOwajHnOhzBzpyembtuLyRt3Y8J6O3xntR3jLLfh+7UUyx3q3OQtTviB10zd vg+/2ntg+m4fzN4TqN7HgrhwQ1Ay8XGGbt0+Margr7SzihNeeB8DsrW+PcJ5 cUT5K81vSOzylzXMeVosr+kvpETXG6imZ5Bw44veq+fxoc99mer9o/CB8NsL 5yv11fVYiVrLr3gDhC+DduUUX6R4MiX3kV66qn+c9Bo9Jr0nS+En87z0Cf4Z J+mvTiM4VxuzCC28oHqCaj6rpr+Y1vM4hFhFekKE6/jKRbe1Hr4X1fcWv6Nq hMS+5XvIWunILGxnjrORefmGQzLuGYMNATFYRz+2Tuq2dMebD8djW3Ay7JgH SV2g4H6poajxRcL5L/YfovOnR2p6n4keFmn9bYPztd4Cam5cckixVfo0z2Ma thA8Kc/AM+WE6rPhRTv34Vbmt1WfcNW/87zOd2s97MOP6/h9VB/Yy7o+b1e0 89KP+rjWHzFY9cS8qGxb/ZZ5Om6qHG2MSvVtz9N+U7FryX32p4jf0eEbib2K n1pbW3JU18ta67d28UPfUhlLOiT5u9T2Jsn4G/O0o/GwCWJ+7hsMK88ArPWg eAUyfw/GBuLbdf6RtKEbCtd/wJvEmgcyyxSn9v40jSdS672m5RAeySXqd1Qi ekNxpx/ar3qVSD6t9R9U2Fz1JTyh+kNLHu+pcg/J4U6psUBvxcmi9WTQ+rSd VdySipdY+srr+tLJs9V6kmj8vpG63l+CMQWnitTw1gu/kvCNCyeq8B2JbUmO 5Kv4xDX8LPmN5Dn7jp3B3uRT9Ocl2HusFC78bsJ7Idyt+1K0c3toPxKPnGk3 e2nT0vtFxmpkTkuJjBlIv0bp15JQoPOtJ7RaojRtvtc7XeuJfVDX8/qg4n0V PHlG1WaLTdpF5mJraAY2BqfASvJMxvRlHsFYuNcfvzv7qPm2X+33Yzq3M3Z7 4jeHA/Q9spYnEAv3BytZ7C5yBAtl6xmKZd4RWHEwBmvp99bT/6lYEC79VmVd U7GKaQcUd6CGVYQTSrCUrPEQPuUP+Jk5WjJxnfCPK053wVwnrqh5fHm2kp8r Tl7FGX2Cz6FIjWVpPqdQ+R1HGd+I13gH7Zn3S+5vH6XxwdmrnDhfjdHY0F9v C9d4de2iC7SxGhnT4HZ3nIzjyBhoruIstInQ8U/LvnqvfPWeNjwn/LwbJf4F p2HDkRT65hTm8slY48tcnbn5YrfDmO3giZk7nDF1oy1+WLsJE1dZ4ztzS4xb boFxy1bjO0pIUYXSpaOS80oeJzjnrIwHMzZeYh4redSV+8yp7iO/4iHlEY8f 8Px95hn3FX9PRvk9pF26x/h6F0nnpAbiFuNUFXOUSoQLV7XotOL3Zt6ruK1v Kr7exLPSB69K5dWJZzQ+Ssm1hftafp8o3d9GqDX4ut4Pur4Pwk0k3zfiQy8f LfeqqTuSXhaqx5f03ZP8W/D4RS1HzLtM7Kv6Id1D4ZV7qleM5Iz5V7T+L5I7 Zl3S5U7Ckcmc4gj9h/D0+9CnuaefgyvtS+KfU8JJ/t6Figt8Q0gm1gULP7jU hWbxt+PvKBIpYyH8/YnvdscdV9jKRXxFmsbZ76XkvO59z2JfKiWF78+tiGNS Kexjj2NrVAE2huXCKigDaw+nwfJIOqyCM7AmMA0r/BKx0DsWc1yPYrrzYUzb 7Y8pDn6Y6hiIX52DMcMlBLP3h2O+ZzQW87plBxOwKiAFa4PSsJ7fd31IFjaH Ca+scE0Xqe8p97aXn+2SXKp6xOxRUqK+v6PgwyT6kKQShRN3xxXzHguwNSIP m6mbgs+sD6cQjyTA/AA/zzsKSzzDscgjDAuIJ+a6hmCOyxHadyjmuR3FPH63 hR6RWOwVixX+iXyO6eq97GKL1HMTW5FnKM9S7EA4QjXbOaF8mKPE/kQRwazH FT5xjJd1KCc0zmr6es8afvhs4d+6oH7PwPzLCCqq0LiniV8ldsmcSoDw5jKm S98frS+Q6Msd5F6S/OqWhhPLtLxJjnOE30f6z0lfOukNpOZWbqjatlTupyve H157qUrlXJIvSx6p8i1idekXKeMZglGF80fqf+QzMtXnVKnrJGfUco4q9dla XzutP5zouuqpoHS+Ul0vfYpk7COXuiw6LfcivYyk35H0CBPOoTM3H+Hczcc4 y+1Zbs9Uan3DjvO6gsu3VX4va/LjhAND+PgKdDmg9GqUfhPSvzRFy232K50+ rXILiXOB+eWqX4TkHhLDFB+5Lu+XHgDSiy9V5cK3lKj7ke9/Wsuzjp2RMYSb CotrvQCr1TWS68r4iuLLP1PTk0/LmaXHhMYNyJh5XIujgl+0miWtD43Mpx3K FhFMoeWtsh9YM9YkkntR5SaC8aSvh+rpkaONQ9ZgWDkn9yl9cYTvw1fX18NP zdn900dGw4rCH6qNcQaovjLn1RyQ6tORqevZmqnxQ8t3Uv2gZOwnp6bm94LC Q6qPh47fXcYqjxTXjJVqPUh8+Z19FA4oU/t+/K5+eZdUruYn/Nb5F7UePIpr 8bLiaJRnJL0Co3U1KjWi9Wu4rsaxVK9DXb8O6ZscL33CKa78vR1pc/axxcxj C2HLrQN9gnuqNrYt2F71UCuWev0r/PvrSs+lV6P008q/QqkQ36v15hLJuXxX +eoU6kTih34rMiZRqfx/TS+dCIkFKo5rfUMknojPzrxwW9mp2GyB0vl7OH79 Hk7euI/Smw9xmnKu6hHOC7cQ5fytJ9w+wYXbT9TxBdmX7e3HuFizr66jjVQ9 pn08UOMpxRV8//LbOp9Q00+vUo2FCnYOLdT6xdf0IA4tkHUK5bo+2dpWxoBD dRzichzBWKzsRY2nXtVs5ZT0FRN+jOtqrEfZt4zBlWk+SHxCJm095yLtnN8l nyJjO2K/hRV3UHztLkoowkd2jnZ+vkruhffO+z7HfbmnM2L7ygfU+IPH9BEU XR/Bkuv/SKn0TbvGZ0AfUcrncJrnTt/4X019Z1dcWbLlv5o182ZNv+p5veb1 W90909PudZeququqq0olX3IlCVkkkISQAYQHYYX3niQTMjEJJIlJIPEe4eSq pJofEBN7x7lIH866pOFm5r3nROzYsSMOxlvaD3zG3M47vZY25vXvuPsc2hgd sS1cx7d6vre8lrSxqwf0zbiW8Ne45/C92AsE+2U81zlequuosH+B/H0u9rrB 3q9BcCxzbm+mBaf5VTvlYrQK8hKLHLwfyFMdxjXYX2SZ/Ui8fqGMBUddT2Ad 0Ih0x2w/X3Kaeh+60K8ktq7rYp3aRdh72GfomWHryQXNrOt6GJPERsUH9UPq z4AB4aPUr3ZPcG+1dAxfTH3YpPpR9aX0sVPEBxluALNjX/c04Ez1e/B9wItp nai7nOLeVM9gk/V3oZd3jeLbWuyNhXhiaou9hnAt2+EjYraesK8ofcqc+a1B 9UnwbyMYK/vERCM6f8IceGxzaZT76h3wiPk1tAxMhbW8o3NulwPcYkTfG107 0PnxUufHS5nWtTejPieuaw/9H9Hbax5zUP+ed3NxTo/x7Z90nvykc+SdmyM/ 6vx4K2MYa5gr6pt07o2tuT37Vr29LY3vB67DHBpYtr36zMduM/8CXxOYsX2H Wt3e4+3cI2ON3DzWJPYxbxxbkla1VcZRrtMGgtOHDeymL3/h1t0OfT8+B7wr 99QEltU50s59bbB/y6btOxldJ4/wnP3czBdh3wHYMeSD4AtxPnDo+D1RvW4T m3rttl7p2nnDa4O1BFuFdRTTNYa9dqPrdh0i2OtQbSf2aQ+p/cNeuT1zHo+F PWW2yeEDU9fqZ1Zq7FgatrgReQDuMeViYsy91PYxjTWG5Z5isBSNOR62DEu6 4irEtuAPEe9bDx/bDwpxFfrVNUdXaf9Qv9VE32s9fLEWga0KgraHYGHfjNuj 2fbF8gZ8IbhSYImnukbSO6PEcOACHygOTKwfkCuKK889a5MTOQ1yDJgxt1G+ zqmXr7MbdDTKd/ltiiF9im39clExMnBygmLzazqAy283QJMRYT4WezuAo4Vm Gj33iFG4P5FhE9hY5FUQDwzCP62+ZiwU1PnGuEevNWIln9orxDLc02hGY0kd bYwnt42302vfyOu/KfW6NqsUm5SNrEqJ4s8ixRdFA25fo9A87RlzMti/QrFr Ruco43DoPjHSO4aYB87u1NExIDkd/dSQox9rYcB6m1f1x6R2aFbq0ecgPCs1 gxhxfW5OGtTfNEEPFPH8kPEt5HCIf22/P8yLbI0/Hqltgh27WjsoF54H5WRJ QI6X9MjxYr+cKA5wHC8KyLFnPXKixC9nynvl+7JeOV8ZkoRacNxRSWmbVLuH /ctm5InaPMQ5TwOId+Ia78zqczOKG2Jyt31CklrH5bb+z+3mqNxpiUpSy5gk tynGaBuX++027ur3SVZbmtIaYfyB+QINBXAp/Cj6MGPd9qo9Hlh4QVs2trYv 4xuv1BapHYLdgV/fecMj/D9sEPzi7I75qtjWW5l0eHgcPl+PUW8/3bVXjBmx 3ojFvX2a4ZfnX3yUT9k2XD+7xbxZD32Exzebn/Nzf+dt5k+RnwOOI15z+6p5 GK2FedZ15kpa0JsdPep02B5ua8w9tIMv0ueasU8C9Mfk6szOYD+t6si6VIys 6fmXJV/XXpp/Wh6o30lqHpVb6qMS64YYA0JjlarrHdyRt6dVJo6K88F9pLeP SFp7mLXG6GOfWNUu10vr5Vpxtdwoq5XEyia5W9MuD5r8Ol8HqF0o0LmJ+kzw eJWDMxpLxPVezXMeIr4A3sF9a0DvDZ2nyONkdlm/jQfgVOpDcqsmIFcqrd/H qYIm+TarWj57VCx/Sc6S319/IL+9kiy/uXxHfnclSf7PtXsc//dqsvzpRor8 NfmxfPkgW04+LZOLhQ3Uh92rDcqj5iHqczK6wOVNSp4/5vZVjXOfMdtDNe72 vcSeYsD2i+QSkQfhcWiRthTr95m+XsjXoF9ArlWH2nxccxzLwsvUB+I1xJ+V w+jLj/2ZVvkc7YCeo0DPldcb576AtM1+cHroFz3NkUFuL6brStdW15Q8VNyQ po8f6zp70DEh97FmdJ3c1fWD+5us4y60c7pmEK8jTjZdCvTlE8wH5Wvci1op 5OHQAxF+sUPnFeJY4AXgzP5Fi3eBGYaWzd8TH+AITLxie+0SDwAfMNey5/Jk u5z/ARfLwk/5vb10Z18QQ+PYra/74hbPErs4boc2ddJ4oWq1oUnqox6pPUjv jpE/KUQeCRhb/S3iAh8/C3v2Wn68H3v4om5t8UD8+hzsNXx0jcb/wIzYmxG5 cO5/y33lzC/SZyEfgZpL4Er4b+Zh3V6nEcvrIy5EnifTF6WW+WZll5wvqJNj 6cXyVUq2/D35iXx+O1U+vZkiR26myud30uSzu0/lSPJTPebI5/fy5Mj9AjmS UiSfphTrKJUjqWV6LJK/JuXKn+5kyZ9vZ8ofbqTJby/dk/84nyi//v6W/K8z 1+XfTus4lSD/89Ql+eWJS/KLE5flk5MJ8smpq/LLU9flkxMJ8ouTV+SXp2/I r87dkn+/mCS/vpws/zvhgfzx+mP5z8QM+eJ+vhzLQG/jFrla3i23qgLc6xt7 Dz3tRJ/kaeb/MH/Rp5/7101scp869uUf3+Teq+jZj2uK/b3qR9d4nfAYmAe5 IeSSLT9oeIj5RPAx0P5EVtnXv3nC9hDEfe929tVPvSp0HDucR0H65l3Le88b BuslV2CcX/dH3Ij54y3bw5v7yW6R70TsC/4Te40hZsZem7bnse39VORyUxUu r4UeoMA6wDftk4b9+9THgFsMc+9oWw/Ax4zBFIviGCZO3iX/0+dwKfwB6r08 zQg4DdY/0Y67vcon7Yh9Dhj7Mj9g1xQ4DlgSXAsG9SGjbj4iFsD+pGPr+r4N XRerUqT2pkCvc57alnxgjQGzVc+gwQFPAN+j54OdeqavFehvz3dYAAMakSxd E2lqf8BLwsYkNo7KtbqwXNVxpXZIftBxuW5YbjWrj1Z/fl/tU6quzzT189mK bQoGFnWdqr3sx350S9zTsTRsXFzlKDiNVfIZzL25nDH8OjTH4EaYI0QOO2j3 CDwqchrIU6drjJSGfuBtEQ7kNNI0VkrX+ZvGvIbi2LYhHWF52o4xzJwbtJbQ SSJflgHfpms3o1X9lvqegq5RKe6JSKk/KpXBmNQMxaUpsqAxwrJ0TqJmYFNC 2Htp0WwgsDv2FQd+iGssg/h3Ye+dLO7bkRieXNtbmVI8gfePaawUcZoMcIPQ iEArBvuLff3A8SB/UensTj1zcdiPBVyNzWkM8OrAoeBOkNeGzRtcOuC8RIwQ VezCeIHjtQwrjgmD39fXB10MBRsZ0gGOBropYF+cB1gXmIV2lJziPmOOEbdP +oRiJPIF6Hu+YZ/FzwOHum77rjN21Mcja8a7I+YHBzR4qN/ac7yQ8QH4v6ie C5zLpMaPOG9k/SWv8xDfq//jfMyQi1UHqWvZ+6DJAL/KfMAW+URwiLg2GBk6 N1OaRuV23aBc1XjhXHG7nMyrl6NPK+SL1EL57F6O2uUsOXIvWz5NzpRP9e/P 1I5/9bBQvs4oZw8U5J9u1vVSg/Cka4zYHfYM67JW1x7yHtb712LxVqeP63T3 qmt2h/fLr7YL1xejd8F8VpCx3D5fh2/smrY9Uz3bBd/VpHOgXgc+q4r72a1y P0XYYQxoCbC/qn3OLj+H82LZ4hnE04izY1sad79AfPlOMbCO3fcys+Me6/Nx xcgLe+9lQZ+fwzzWeHRGR0yx8rjG6hGd86M6D8KIRcHpLRsOAIcdcP6c+HfO 7J/xvtvkVcChoPazbQpcsWnl2qDvAt9CnZ9pNYLU8h1wTzOOBT2/zkU8R+0b n9/X37jHvBL6LXPPWXBovOabjP/BuQdmrQ7d+vDvcg6BywsvGQfCeQoeBBwl OJBVG5jHxqO/OuTRwZtNb7+RKYxNWwsTm694BF9m+qtXnL8TjCX0uG7n4Fo5 HDbHwdGTZ0P84ea9rd2Xxn/wvW/sc8jLvf7ABejaGl213wB8Bn7GcJtxlQNu fQws2vrx1g3zYkv7h9dgWB8nq02/XhGSi8U98r3G1agBO56lcXdGjRxNq5Cv H5XIP1MK5Kt7ufKPpKeKbdLl88Qn8lVyhnzzIFdOZ5TKxYJ6uVrcJrcqfHKv aYB6jWzk/3tjtp9iyPbrhX4AmgLed/pD4/7h3+2emO3Atcc1QDw2vmEDvz2y Zvk84k8d+H343b4Zx8tOutxh1O0xHLW/ufe8rh/sL0m/y/2/bN/5DvJ+xgXY 2OZjjmmvXsbWIbTCXItj5pexTzx8KPxsbt+cZGq8+6QbfjPGWDe1A2NKUtqn NAab1OenmO/Lg48Mqn9W3J+pGDQNObf2KPeIvFHTK1c0bjlX1Cxn9Lqeya+V 07mVcjbnuXyfWarX+5lcyNZrnlsml/Ir5FpRnSSWt8i9mm553BxSHzcshf4x Ke0dl+ehmMZhs9S9wJ+As0GPHtjM/vkP1xz2nWMFHJPzFepT+rHWXAzbM2v8 B7A6sBrtGfPqL5hPJj8PTgX3c97yZMBsljNDHAC7bH0ieuKmq/M4SczlCLlH w1GGr/bpS0aob7R1MqNrL74Dbh95rddch5NYZ+D+141TG8e8Wfd87kvO8cFl 00HiNzOmIXfuPkNxXERfH13ZlVE9RvQxeG/+v54T9gn+t15tL/AX9hbNCcwp BlFs1ByRpIYhSW4IuzHEx0kNw3JH45akxhHGZOCEU3SkdoyTAwYnnNmLPvIa a7KObMnFGyvMebdC+8qeGpYXg13sZ257n3kUrA+sE/raNfOf5otfmn1xdmdK r8202hbYrekXlgsEfx8nNwvOETy+HWdo117yWhKr6P1A7iP80bUyW2n4F2tw lJjjgPuZIJ8YXTOeMuIwALADeFvMp7Ab+A1Yt30Luy6/qkdo6NWe+2c/rGXg HmCi4oEF4j/U4CHffrHMJydyG+TTB8Xy22vp8qvzSYx7/sc3F+S/fnVa/suX J+W/fXla/uWrM/Lf9blfHE+Qfz11U9+XLP9xOVV+k/BEfnc9Q35/M0v+cCtH /ng7X/5yr0iOPHou/0yvVvvXKJdKu+RWZUCSa0NyH1xiC+p6IuQrkfuE7gm5 w6qwaXXBvzQxJ2T7KyG2Rn6oBfpSx+l4mh/UBYAHsR5Yhv3r3V7o4IGQ76sY XmFOAzgQsQC0D9xPHT5U/+6KmW1CnhTrCfV9IbeehrzrC80jtPDcG9DZPKex aI1t0KZ5fbvAgeM9bbE1+mnks5GDBk485Nyhm0DubnGfvhoDMT90z8iD+/Q8 0Hi3kN/R34GYD7EFdUIz3Ms9H/Vw7gjeI9eNvD7kekx3kYPHwXnGD+BOKyPr 1LU3TZquBBqejinT+PuQ34AunXbEcoFY8+TWN8w2wLfChwNfTm29oS+HT8Vc xXuxluhPMeBb8JvBISgmg2/pc3g4+FHsieeCi7Ye6U+XLCcxvGy669FVW0Pj ek6MCeJbG7BZU7BnH+HnKPKXDovgfPCHQac98OLcHvZc26aN7TrU0WxZnMs9 5E1/0zi2ztiwArEe6o7Qtwm5e+wziVoz9c+p9SF50BiUVOxh2WA1bSmNYZ3r asvqh+SOjps1A3K1MihXnvfKD2UBuVjeK+dKe+VMkV9OF/n02COn9O9TxQE5 W6KvlfXJ+fKg/PA8JFcqBiShol+uVPbLJX18+TmeD8ql8j65pO+7WBrQc/bq Wg7IhVLsh9wr5/V5nOOs/n1W/+ec/j/G94pNTpUF5Yye+5ye93zlkJyvGpKL NRqPNkTkTsuY+tYp9aEzkoWay4EFcqqIn8Ep4Zr1sXbBcl2eX8H9hm9hbsnF J3ifb87yO9CFIwcPzggangyf5UyS9DrdqOvX3+OXkwXt8k1mvfxdbcffH5bL F08q5aun0OC0UHtzU32CaRi2aNO6iXUtDsDaGSB+tvgMmBr5h9Ci5cb7FvYt PiAu3uU8gK/F76EGYmLzsHYJNtPvcn3A3oH4LmMfzFHYXsxHzMGY86HwnzP0 B95Q+79jHPmiG8yL772zvDme2/OGxblL++91uJh333LriHvjLtc8tfWW62xs 1XwAfofP4Qfo7ZHXr1V8ZrzoCrmLsjA0WMvMlRQgB9yv1z60oH+Dz1hQGzEv Wb1zkhGIK45SrOWbldTOaUlum5LbLZM6xiVRx13kIsBHdM9wXqT16P3rmeF4 6o9LThD6DPASq1I1tkktW8eMYpn4nvTM7eu1O9Cx/1G8YY/BJ0J/gDgN9wL5 Vuzx0hCFr1rTuaK/I2y/BwM8cDk43+HVQx7YXtP36O+tGl4jrsC6bXa1VZ1O G4O/DXcqHgAHgBgTOv9xi/fAZ0F7D/9I7kbtJvjskgGLSxtcXQvOh/lhcfE2 Y7UBT5txGBdYrNA7/4Jz1D7HOCnLKxjXBG4CuQtoT7J7cS1j1J8iX5OsWOiO 4h3kFpJ13FEMlKR2JLl2QJLqQnJPR2rjoGS0o9ZxXAp7Y9TIktfW8aBL8TH4 bh/y5dPMS+UGZslH5envgs/I4WPjqQrIb4FDB5eO72R8PPnFUXAq68ad6DVA HTxqyLDOYeuR64kpfoTeA/u4gbNZ2LM5DE0IckeM9eArUE+z4nQsh1qQHeZ+ umbhP9dZQ1Q3ssL6RWhCoCMHJmhmLf4GfbRpOEzzRd2Xw3SDiwe8F0NLppEB L4IYmzEQcuD0T8BULo5Xvwb9BnJZtvaMc8J39/LG/N7IZakfjACHAc/Db8/t WG3c5IbNH+gtmI8AX2frK6cP9zbOI/wy8C7wSP0Y5ih4jU3qcBADeP6I2N/p Djjc83iujdzVBrljG+azYLe6oQGbQWyxyxo3xhjUimJ96eO4cVKocwvRx750 fJThTXBwU7Rppumxe/kj7dKK2qSVl+9k7eV72Xj1nsfVVz/LOvaLef1eNt/o eP0zx7p7fUXH0oFdU+qBXpi9pB5I7eeo46UGnD4wMGc9FXCPkddCTVm1qx2w mod56sbyFNcgt5PeM6V2aUr9SFTuqd+6Cz1V04gkNmDdjOrz46xjhZ4cOjzU t4HPtrq+NeZDqkbX5LnaEvCq+Trvs3G/dF1k+BFHTjNflNIxQb94S897A7xt teLmSvWp6n/Pqh8/C99bEZTL1QNyrT6sfmpYEhuh7RyW202jzCmlto3JE41V snpirBmEnoy6BnDQwx5X6e3Du8J8ALkotVM4QneM/hglQ7Y2kTODFsD0APPM u2GQG9DHxaE51peUUueCXmBLtpcQazJWzU6OW80u/Ae4/g7qIU1fzNwSNRvI 1+4SF5rG0uWk5k0r0TGz5erSNsy2TpqNQB0nuYIJLy+xybiv3c1rHJEHaQAH gHk8abwA60FntvmZ5K5Yf+RqkObNz2PtMYai1tS42Qk3d6nRxBzeektd1Qx0 a9DJvPiJGjb65y1Pf2UDGNKOb7gGiC+h+dx8y/PNvrCYztO54XwzjJdfMaYd XvmQtxhZ2rW8xeKH+k7YKj/rGa12ELnAsPv+Hlcb24IdekM9He0nsIDDCEu6 BhehrePv+JGaoBgw9/orfjbWDWIgrJUixf3puibuanx8vW5YLteGdYzIlTrg LOiqdDCOHtMYMEabhHi5TtcE5kBgbou5dfB/4BS5FzRrsuZYW4Q8bx7yfMit 6lwGD5PYHJXLdaNytnJQcaXiSx0nS4NyQsfx4l5qHU7q+L4spOvEcOx1/T7I gyS1oEfJuMbyk9R0Zep5wf3AhsKWlg+Z3y8bXGLeGLW9FWGslxXyt+SdWGu4 Ta7X7OgL+nzUeiImhD9BPRJ0rOCI0DMGtYO3da0mKqa83YgxpH9bLh/53oed 2GMY+XvUxM8xvwwtXWUY+aI15vHw+bAjzMHAX9FeWV089dHOH5SwZntZ1y1w 2JL6hiX+/WzQ9bhh7to4LNiGgv55l+8x7V6+3tO83rnD+C47MKfXaYY5XOSy U9qiavsiOsCNROVR+wTtI/RB0PBBU4TcGLg34BbkAcEnYQ0hrgNWXdhVDKrz bkVt9+rLn3V4Nt57bHZ9nfb9//H15YP39JNYV+CTwLGOMD9iORGs2T6nU/bx npjeGKPDaWVZZzhj/NXQsuXDwcnC3xqWfm14mhjbjuCs4tj30vFWwBQR+Hrm N3aNo+XYpZalH1gBfVOnN6ipRa0tsFJxME49Mmwm6gyhwaU2X+O6e4qtUuqC klzdI3cqOyS5olMeVPtYk4VamcRajaeetcvRzFr5NqNajqZXy7dpFfJteqUc z6qWs3mNcqmoS65V9lI/9aB1nDgMcXmxzomqMehyt9X+bat9h2Zzg3lH+qWI ca1eDUgz6zvUXoLHmULfSsP7qG1snUKdo2mLO6d3pU2vZTPeo+9vGN/iuetd vgNrHP0EqvT8wNGmpVK/FzS+Fd8th3/HOeeIB4ML1FdhbgK7wFcRCyMWBGfC +B1413AXc0mw24ib5gyDdDs+E7o++jHyfov83CxwfxpHPOiYkqQ22JJxuaVz +VbjmNyoj6g/HZUEtV+Xa4YloU5tWoP6YX3PnZYJxcmTZje60a9imjjLvqdi 14FF11NqmbVssBfI83J9jlg9WLXLsVfz9WWne7WcYbXLGUJb3ERt8Tpr77u5 357lXzCgaW13NczQEUEbxj0vhxeoEUN9Hmpqa9H/E72neq3uEfuTYV+OPLWh +YpRCnomJN8/RT4MOVrUwlnd6yxztyWs67RjMXtZGYaoCiO/brlN1BrWO74M fUK8WlEb0KotMP6mXkr/P6dvmrUejzvGyAdm+qZo2738AjT9yCVbL6s51pUW oy4PPZjwfbsiktU+JJktIclsCkm2juuKg65XBuVGzQBjloeKzdBPBHpj3HfE Pag/gi3yz5p9CLn8Cvkv9JyY2WKc3+xwD7RdqPnJ1PNAWwd9TqKe+2aN2uza IbmvGAs8MGIo8BXQStSNrhKP+BinWR4MsfvI6ke5EKdPG1t/w+cHaLP2mLfA 98P3BA4rd5ge+q/cXg/HzzMGhZ2HPhF8GnANcnT4LeD4gKkntj7o5007/paP pzbeEmN4+V7EFV7cGKRG0uq7wEl4+A9xA3qvoL6iYgj3HXrRNeu9AP3H+KaL D3SAzwBPqnMYvcyqqFdcNNzJHi6L1GSVDVjNhQ2bL88HXe0f4q6o8YU8UrOz TI14EWpZfOqv4Sfbdf6g/ql1VB6A86oOSWJlQK6X++RaabcklPokoSwgl0v9 crkkwHHhmU++L+iU03mt8l1WvXyRViWfPiyV/7xfJH+8WyR/uvtM/ny/RI48 fC5fP62Xs8WdrBO72xS2/nG6ZnJ7bd9Y5I1MG2z4k9zQtOvVNmcaKeqiYqbn 7nCjndoRhztdHVyHxwl+hIF7qD0BBjaenfd3cd/FmdABWC5wwHGdeIwaDegF 6Mdw33feMTdcqfetSkc19cxYq6uG9cfciLpaDXC01CxavR64ZuhcWA80aTjZ 6k2szwjjRleD4uFxYOoWxuzrzl5/pNGd2yEfC2wdmrfHXv1UyOU+Ta/gONQF s+fAsThPF3B6zPQ34NLxPVgHM7lxiMl8+hx6dgx69RWrpmcgp7zx+jCnAuwL vw4dKTgEG6YtnSFmtzwL8PmEw70R5M2hJ0XPmkVbt+SSXG4NeXs8Ri0j4t92 x+8i79hIffkGOb9W9GmZsrjZHzeNVMDlLhGDoD9ReNm+N/JAiBWA06mHfWEx wZJioJUDxMY/yxpi31c/cwAj4fll8Ht778n9WT3MG86NweVXet33iFdZt4E+ P+EV+i9gPOC7VPjEpohcVT94tXZYR1iu1Simr9IYtDwo53Vdndc4FHzw5YqQ XFZsfaU6TN8JPfC9timNX9W/ds1Iavcsjyl6TO2Oy+MexcJqz7KCwLfouah4 FdzaMPKxay5PYHFBN+fNLnHdkNMpDLsj5kmYnMgB5wlwH2JF6rzJQWxTvwE7 BiyPWhTooVLBU6n/TlG8amNcxjEvNt+6PL3L92Mdrb88fDzh7gO4BMRjS3t2 D3Cdl/fe2WPyqe9l0Y2F/Z9lTo/UaCjWndL7EN16w9hxdN00Mqj7saNxRZE1 r07ggBqA4KJpIqEv8Tt8c8gpU3di7xl0HHHU+ZlJL8bcMj8ws/PWzes3rsbI 5hMHObS3/C2rr94p1n5HTgWcy7obG+7xhr62eoDfapzy/AurR8T1wncepD/b N66be2ibvr5pYtvmveOLfE5DSp6bNYMYe3zsd/mZ/oV95qowmE9xPHpv/ENt B/M4+j6812o8rJ6yn7lri+ep1Zm36+XpdYIf1VwOMw/r8kesVXG5dFev4emn hl0+1KtfQc5ocOklbXBIPx/3ApoW/xx45n3aA8zFbuhbpqxGuQl+bWydthaa hsao2QbwEainBlcEfRhsCjAtc8XrrzhHzadbLRxjJ48fO1z/iJt0Ph7YAA+2 yDjeYnrTzhu/ALsyTE5/zzi7aVsvwC+wU8CowN3gqWCfmbteNKwddjZ6mPVH xot49XW4712zpv+FJq7C6XWJo9RnJ2vce60a+aNOOVvYJKdza+VYZqUczSiX b9LK5bvMKvZGwX6R1+r7Wa+YonjuEXx+F3JEqH2xngmo7UYNdpbGpcg7fhgW q2b1zJBvRixR6vpXIDePWLDL1VcZ92RxezO/8xr9OjivPP3eqH8At32P/HhU klvGWeOQ4mocyCOoHUF9GOIZcPnPh60vFa4B/ADr9KF9Ray47HKLLt6Ef4EG EfcE+RbwScBp5IkcjmO9384HHDex6WyIm6teTXzYaWoGl2142ODQdq7YHB9z 82nScVDTWz86PvpHl/+xPNAcdZE/kVfnPNr/iWP54CfOr5UDs3NLLpe0zPj9 HTla+qJX7zk/PfvoaRToe706s+23/Iw5nde0Uy6fFX/x2uws5/hPsv4SNsl4 X/K8+h1W9t3r+veaDsz9FTf/8bzluew7L7j60FlqT+D7zZZ7R/JzW3Z9Ed+D a5v1rv1HNnLR8dMLbk0t67nhH8ac/sawy571G1wwnahh+y3iKawr8ErkhMDz 6vy53TgqN9THXq3qZ572XJFPTue3ybHsBvn2aQ3HiaxaOVfYqrGOT+419LPO C/0uECNZ3+BV00K5fKnf1ToG49b7LegGeBHUqLYiB4WYFLh80AbyTog5igeW WHdf7HiifPDT/ml56kPMO8v8WyZGIM7aIBxz++alIAROe03KhtekMoJeguAF dqQVHMH0jrSjP+PsjlsPqP/7oEsd33C5/W3Tpk5sGmc/6TR64053B/8Wddoy +EtwsdSnLNmcH3JzH7Z5YMn0sqyrX37l8jGvmDuCf7S15bRIrs5+2sVM4Dy9 emNv4L7D5+H5+N6Ph3nVeZc7Xdj/kHfAekUex2qT7PM8XSy+8/Ca+Y1+F3th hBb2nJbqgDku6ndW96x+A7VRihWmWGv41uVIfmK+Y+X1z1xzKwc/u893NVKu lhfzeoIxp8V8I86PDTvbEfY0QkuWW8N1huYZ6xQ5tlnHfxkf/SPXkrcOsLbg Z1Z1jR5yd8QI7xwO/VFCeu0HVhUfqF0b2/xRcZBpUueAT1HfvOPVNxsXPrbu 8A/7Qe4S+yOuhJamiBzCLPOW4LbSdT6mcU6q3Q+AQ1rgvEXcTz4F+p3JLWJJ 2GDME8QEI6sHh7qRyJrXU8TiKI8XsPy+xVjBecMlXbMWz7V7eg2Xy62PGBdu /U/185EPCUxLIWre0Ce4Y1getwzIw/o+Sanp4biL3rrVXfK4qU/yukakPBST utEFaZ9YEf/MhvrmFzofdljHa7WmuB82tzD3FogzYV9/+pDH9+br7kfDaQC8 +Tq3Z3N20eUc5z96bX7X6eCRD0At666rP+dctvls9ebqq5infMu/oXO1+OiV rTnOL73nThOBtQicav1aLPaoGduQCsX8phkwjjpP711OaFEyNBZ54p+TR764 POpB3KCPdaTz+bji+Gn1wTHqBa43aZxSZ3HKjfqwJDWhx4/1/snqiki2Xtuc zjCvcZF/TCr6Y1I/Oq/2clljyhWNGVE7vqaxJWpFoGu2mvLG6BJ1zsz/Oi0y asdx9GP/H+wloHFHGLrDtT1dYweH+rtxrDVoU9z6xf5E4WXLX3tzD+tsUq/h 99mKeTKfy4mMUvnuSbEcSyuVM4qJLuQ2yA/F7XKtwi+36wfVV4yRg0B9LnpU oD4eOUvr0bnpOIRtq290ujxPw43Hpk3fZm6smnWtS9S9ZvWqL8Iags6ie5q6 i0e6th6jTk2v8yNqYCcltXNKHkET24l6RD22TyoWisrthlHyYgnVgxoLhjQu 7KUmyDRHivXK++VCBXKXQdacIndJrRH0RPr8taqQXK/qk2uVfXL1eUCulHTJ D+rrzufUy9nMarmQXSsJhS1ys7RL10yvPGoYlKdtEcn1TbAXIbgj8Eb4Xfh9 vdSJezjV07g7vO4wP+zAkNN8DQIzuXo47z0DLp4IHeYDXQ2pF++jvsn14/e5 HkY9yCez1nyXOGzU01Gumb0Js47igDzN0GH9nX0e6zfmTfff5fS4rE1HbfLk Frn41slt9ultGNe1E1lnvMy1M2RrJze4KFlqA1n3g3oexaXQdGBNnKsIyoln PfJlbof8LaNJ/vCwVn5397n8+81C+ber2fLJpQz51wtpOh7LL84/kE8upMov dfzq4iP59eV0+c21bPn9rUL5Y3Kp/CmlUv6aWiufP6qTz580yJd6vq8zm+Wb nFb5Nrtdvs3Rkdsp3+Z1yXcF3XKs0CfH9Xg8r12O5bTI8exmOaXH0zlNemyQ k5m18l16hRx9VCJHHxbLd4+K5MTjAjnzJF/OpxfI3+4Xyaf3i6kX/fxhmXz1 pEpOKDa6WNylsUSIdbCZPTHWpsEeI66E7nlk1eJ69CqY20Xe6D1tG+okYMdw T1Ab7IcOBDpKV9taj/2s0OMUvShY87Rw2KMCnGgdc8wbFq9xbEj9hPV6xD0p 1ZipUG1YttqpJ7pmUlujch95R+j0q/vlyvM+uQT9XIlfzpcE5Psi9IbSoc8h v3+peoh5//v6f1iPuXpPi4IL5ISrR8H7ok5F50kc+4q91Fjzpc67lzo/TeOE PsM9M6ib3NF5ZD28WNcS22Tsw3k0aTxUu+vLAi7StPwWK7O2xQ3qet28R+ze NaN4btLi2UbmeDaZl6yNGHcNfUOl00tBzwN9PQYwZRnr3yxvCW653OVYi4g3 0atngXkU/A08Wjrg9ukIWyz6nPnZJXLHljdZsQGt7bD1M61GzSLq1dS2FQY0 DuyekCctw5JSPyB3qoOKoQNytdwvV8p65Ieibjlf2CkXn+ko7JBLxZ1yrUzt bTX0lNhjfJw1vNmIJXvQH1FHj+trrufN7Z60oY9zkVdBXbJ+JnIqhah1Ddh4 1henPqLc9SeqGDIOvKR/kfnzAn1PPv4vgL7p6FdkR+xDAl0YtFP5GtPi/Hk9 +Mxxye2KSm7nmPxN18Xfn5TLVxmVclx9xvmiDvZfSKwJyd3GIXnQgj6Bo+yJ hzyQt/8Iepmj5yR6cKJPCfZJwR4fSY2D7DN2qSooZ3SOfp3fIf/IapVP0xrk z2n18pf0BrUhzfIPXeNHnwWYd4eeMwF5/qYxudM6IXeRJ1NfAR+eqbFBbmiR GsBng6bZqxxBbST0IFvMJ7bFoCvcYW8639y+2tJ96vh88T2d53vWryG2I20a T7S4HGTrlNWLIvfQyue2Phqbh/3oTHvnrVUbzRPWa7vW5T6h5UO+vDC4JDmB BcWWcY37ZyW5fVpuNY3L5dpROVs+ICdKgvJdoV+O6vjumV9OlvRR03q5Bhqc UbnXElXbO0XeALo26AlryQVs0jcFXO6y95CLMp0L6rZ74l5t9Q51BeDSkUvF 98P8Rx/2UrcWKp1ep5H5B8stQE8OLrnX8ekhx4UZ7+X4dVcLgNw1fRPwiD4H DcnwoulIcETdwIjiFcQg0EFT37y2bzy6/l8U9R4rezKq7xlZ2tFz7hq+Ye2H iy9WzcehlrsP2E9tCzj6WrWx0DUgvwY9x6OucWIb1InfrB2UBPVVCbo+byiO uKNzGLpmxruBGLVFNS5HxJqgCU/Ttk29GXjSAWhx11A3+UaPb3RdNMjRrBY5 lov9sNrlVEGX2txuYpTL5b1yqayXWubzJT1y5plPTuarz8rpkK/1f77Quf75 E/V1j2vliPq7Tx/Vy5HH9fLZ4wY9NnBNHElv5vr4p/7Pt/k+NycGqYHBekB9 7cOuGcWuGi/rWs5CPO2tCbVvhYPQgMJWmnaDWtMR2MdV05vS9q1SZ1szZhot 1kKRK/yo9xrwA+w/dK/gQpfs2oOjHHL3BLrEMcd3A7vPup418/CPH3HXyx6X zTjA+CDEs6jjQn0R+NZuXZO49tW6lhFzgRN4qFgRHFliY5T5dPyNGipoeJEr h7aEdenQ0rDm3H4P/BG4OPL9C/uO63ecFvX06oPmP/TTg861z9UnmdZ6hz09 eg75f8W6zL2Zvoz1TrM71G7je3ewLuwFX/dqzlsmtw/1YVx3eq0rIrgXa1Iy bHXZuFf51DLrPVQcnhEATgYPOEZNz7XaAbmqPj4BORHFtZfZB7KX2vuEqn65 WT/MXPJDcIZdaif8piEAT5nNnpIx9o+AtgA9VzL9xreg98rD7hhxd0qnpz+Y 4evQDz5z1xUxMtYFeCDUlsAGHGpc1qymAXg0vAL+G73sbQ4ZRw+cqX7d9bPu iCGH9cL6Ek05Gzu5bbo64tEtapy7pratTpaaUsshwyYjNwy+Fdo/9MND35Qa aiGWGb9AKwRd5VP/FPtUpraOyQPFqw/VhmZ0oU/hNLUVyLWiZh56YNh23Etg FMTlI6hfAie08dpxmsa3TGxYDRlie8QB/a6vBTA76k3xOxu458UmeW/W7Opv xXcGB+z1I6Z2Ycj6Hlg/EOsNgj4Ez9nPz+rwy4BBUNOP9cm+Xus8Nz6nZdpq XtpcrSt+A3oNca+N6AZ1kcgHeDl3nAd9kHFu05KYtov7nkTtM6zXmtXlEw9x XxbrV8XzjRkWq3D68oK+OfJ46KvMumf2+3N9BdFDBDVN2MdBbTP0Jaj37fX6 5yNvy/pby7mAXzQuc43+KE9tWboPepqYJKnvv14/Kpegyyvuk+P5PTp8Gnv0 ypkyxQmVA9TUJDZpbKLvvd8xpfN6mrUA4O3hM/n9wsv8/g1R25uk3dk6+Lk2 l+ttdb1mG6CLi1ivZdiVCu5ZsqJYY5mYIx92NgTtKvq7rNieb9T1r/AeV6Ae m/WgK7zewKPQs0KjntU7Lf8fCxXwvA== "], {{0, 113.}, {200., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag[ "Byte", ColorSpace -> "RGB", Interleaving -> True, Magnification -> Automatic], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{200., 113.}, PlotRange->{{0, 200.}, {0, 113.}}]\), CloudGet["http://wolfr.am/VAscEWfy"]} -> 1] |
SlideShowVideo can also do things like take a TimeSeries whose values are images, and turn this into a slide show video.
AnimationVideo doesn’t take existing images; instead it takes an expression and then evaluates it “Manipulate-style” for a range of values of a parameter. (In effect, it’s like a video-making analog of Animate.)
✕
AnimationVideo[ Plot[Sin[a x] + Sin[x], {x, 0, 10}, Sequence[ ImageSize -> 300, PlotRange -> {-2, 2}, Filling -> Axis, FillingStyle -> LightOrange]], {a, 0, 3}] |
What if you want to capture a video, say from a camera? Eventually there’ll be an interactive way to do this in a notebook. But in Version 12.3 we’ve added the underlying programmatic capabilities, and in particular the function VideoRecord. So this records 5 seconds from my default camera:
✕
sw = VideoRecord[$DefaultImagingDevice]; Pause[5]; VideoStop[]; |
And here’s the resulting video:
✕
swvid=Video[sw] |
But VideoRecord can also use other sources. For example, if you give it a NotebookObject, it will record what’s happening in that notebook. And if you give it a URL (say for a webcam), it’ll record frames that are streaming from that URL:
A much-requested feature that we’ve added in Version 12.3 is the ability to combine videos, for example compositing one video into another, or assembling each frame as a collage.
So, for example, here’s me green-screen composited with the stream above:
✕
Cell[BoxData[ RowBox[{"Parallelize", "[", RowBox[{"VideoFrameMap", "[", RowBox[{ RowBox[{ RowBox[{"ImageCompose", "[", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{"RemoveBackground", "[", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"{", RowBox[{ InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{ {GrayLevel[0], RectangleBox[{0, 0}]}, {GrayLevel[0], RectangleBox[{1, -1}]}, {RGBColor[ Rational[89, 255], Rational[211, 255], Rational[8, 17]], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio->1, DefaultBaseStyle->"ColorSwatchGraphics", Frame->True, FrameStyle->RGBColor[ 0.2326797385620915, 0.5516339869281046, 0.3137254901960784], FrameTicks->None, ImageSize-> Dynamic[{ Automatic, 1.35 (CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification])}], PlotRangePadding->None], StyleBox[ RowBox[{"RGBColor", "[", RowBox[{"{", RowBox[{ FractionBox["89", "255"], ",", FractionBox["211", "255"], ",", FractionBox["8", "17"]}], "}"}], "]"}], NumberMarks -> False]], Appearance->None, BaseStyle->{}, BaselinePosition->Baseline, ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[ Rational[89, 255], Rational[211, 255], Rational[8, 17]]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], DefaultBaseStyle->{}, Evaluator->Automatic, Method->"Preemptive"], RGBColor[{ Rational[89, 255], Rational[211, 255], Rational[8, 17]}], Editable->False, Selectable->False], ",", "0.1"}], "}"}]}], "]"}]}], "]"}], "&"}], ",", RowBox[{"{", RowBox[{"swvid", ",", RowBox[{"Video", "[", "forest", "]"}]}], "}"}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.83003607610647*^9, 3.830036206745329*^9}, { 3.8300363050582*^9, 3.830036321953178*^9}, {3.830036639291601*^9, 3.8300366458665743`*^9}, {3.8300367180837393`*^9, 3.830036752163615*^9}, {3.830279843012519*^9, 3.830279844914358*^9}, {3.830279900718885*^9, 3.830279908976886*^9}, {3.830280855267188*^9, 3.83028085666193*^9}, {3.830460464769618*^9, 3.830460469651174*^9}}, CellLabel->"In[2]:=", CellID->1729772881] |
Notice that in doing this we’re using Parallelize—which newly works with VideoFrameMap in 12.3.
Version 12.3 also adds some new video-editing capabilities. VideoTimeStretch lets you “warp time” in a video by any specified function. VideoInsert lets you insert a video clip into a video, and VideoReplace lets you replace part of a video with another one.
One of the best things about video in the Wolfram Language is that it can immediately be analyzed using all of the tools in the language. This includes machine learning, and in Version 12.3 we’ve started the process of allowing videos to be encoded for neural net computation. Version 12.3 includes a simple frame-based net encoder for videos, as well as a couple of built-in feature extractors. More will be coming soon, including a variety of video processing and analysis nets in the Wolfram Neural Net Repository.
Making Videos from Images & Videos (December 2021)
In Version 12.3 we released functions like AnimationVideo and SlideshowVideo which make it easy to produce videos from generated content. In Version 13.0 we now also have a collection of functions for creating videos from existing images, and videos.
By the way, before we even get to making videos, another important new feature in Version 13.0 is that it’s now possible to play videos directly in a notebook:
✕
|
This works both on the desktop and in the cloud, and you get all the standard video controls right in the notebook, but you can also pop out the video to view it with an external (say, full-screen) viewer. (You can also now just wrap a video with AnimatedImage to make it into a “GIF-like” frame-based animation.)
OK, so back to making videos from images. Let’s say you have a large image:
A good way to “experience” an image like this can be through a “tour video” that visits different parts of the image in turn. Here’s an example of how to do that:
✕
|
You can zoom as well as pan:
✕
|
As a more sophisticated example, let’s take a classic “physics image”:
This finds the positions of all the faces, then computes a shortest tour visiting each of them:
✕
|
Now we can create a “face tour” of the image:
✕
|
In addition to going from images to videos, we can also go from videos to videos. GridVideo takes multiple videos, arranges them in a grid, and creates a combined new video:
✕
GridVideo[{Video[ URLDownload[ "https://www.wolframcloud.com/obj/sw-writings/Version-13/Video1.\ mp4"]], Video[ URLDownload[ "https://www.wolframcloud.com/obj/sw-writings/Version-13/Video2.\ mp4"]], Video[ URLDownload[ "https://www.wolframcloud.com/obj/sw-writings/Version-13/Video3.\ mp4"]], Video[ URLDownload[ "https://www.wolframcloud.com/obj/sw-writings/Version-13/Video4.\ mp4"]]}, Spacings -> 2] |
We can also take a single video and “summarize” it as a series of video + audio snippets, chosen for example equally spaced in the video. Think of it as a video version of VideoFrameList. Here’s an example “summarizing” a 75-minute video:
There are some practical conveniences for handling videos that have been added in Version 13.0. One is OverlayVideo which allows you to “watermark” a video with an image, or insert what amounts to a “picture-in-picture” video:
✕
|
We’ve also made many image operations directly work on videos. So, for example, to crop a video, you just need to use ImageCrop:
✕
|
Image Stitching (December 2021)
Let’s say you’ve taken a bunch of pictures at different angles—and now you want to stitch them together. In Version 13.0 we’ve made that very easy—with the function ImageStitch:
✕
|
Part of what’s under the hood in image stitching is finding key points in images. And in Version 13.0 we’ve added two further methods (SIFT and RootSIFT) for ImageKeypoints. But aligning key points isn’t the only thing we’re doing in image stitching. We’re also doing things like brightness equalization and lens correction, as well as blending images across seams.
Image stitching can be refined using options like TransformationClass—which specify what transformations should be allowed when the separate images are assembled.
The Calculus of Annotations (March 2020)
How do you add metadata annotations to something you’re computing with? For Version 12.1 we’ve begun rolling out a general framework for making annotations—and then computing with and from them.
A completely different kind of structure that can also use annotations is audio. This annotates an Audio object with information about where there’s voice activity in the audio:
✕
AudioAnnotate[ExampleData[{"Audio", "MaleVoice"}], "Voiced"] |
This retrieves the value of the annotation:
✕
AnnotationValue[%, "Voiced"] // TimelinePlot |
We’ll be rolling out annotations in lots of other things too. One that’s coming is images. But in preparation for that, in Version 12.1 we’ve added some new capabilities to HighlightImage.
Use machine learning to find what’s in the picture:
✕
ImageBoundingBoxes[CloudGet["https://wolfr.am/L9qz1zu4"]] |
Now HighlightImage can use the annotation information:
✕
HighlightImage[CloudGet["https://wolfr.am/L9qz1zu4"], %] |