Online Enrichment with Free Daily Study Groups
Students are spending countless hours online for classes this year, pushing educators to offer more engaging and worthwhile virtual content. We debuted Wolfram Daily Study Groups in early April with this in mind, and the results have far surpassed our expectations! Throughout this ongoing program, we’ve been able to keep students, professionals and lifelong learners engaged and connected in an enriching online community. With several Study Groups completed, and more in the works, we thought we’d share some of our successes so far.
How Do Study Groups Work?
The idea is pretty simple: one- to four-week topical programs made up of daily hourlong sessions Monday through Friday. Study Groups feature fun, directed, incremental learning resources. An instructor guides each session by sharing lesson videos, polling the group to review key concepts, introducing practice problems and answering questions.
Highly motivated attendees can demonstrate their newly honed skills by completing autograded quizzes (deployed to the Wolfram Cloud, of course!) and earn certificates of completion. To date, four hundred Study Group participants have earned these certificates that can be shared on college applications, resumes and CVs and posted to LinkedIn profiles.
Start at the Beginning: Introduction and Fundamentals
Our inaugural Study Group started with—you guessed it—a primer on the Wolfram Language. Video lessons were borrowed from Stephen Wolfram’s course An Elementary Introduction to the Wolfram Language. During progressive daily sessions over four weeks, participants built skills by writing their first programs in the Wolfram Language, doing computations and visualizing data. Our poll results showed that different members of the group had a range of plans for their new skills:
Rory Foulger, instructional designer and technologist in our Outreach & Communications department, led this Study Group, bringing practical teaching experience from various Wolfram student outreach programs. Each week on Friday, Rory introduced fun mini-project activities that provided a recap of topics from that week. In one of the projects, the group applied what they had learned about defining variables and manipulating lists in the Wolfram Language to generate random slot machine (AKA fruit machine) results:
✕
fruits = {\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzFWglYlOe5HTUuIaLINmyzw7DvOwoiCO4YtUbjlrgkLmnMjdqkN01jjLG1 tTdmu21s2qTGiBsIguwgICrKjuz7zsCAxkRNIiY5Pf9vxiveWM3S9Huez1mZ /z3fec9533dG1ZrnFj49UiKRbB3HfxaufnHali2r/3uRCR8s3rx14/rNT62b tXnbU+uf2hK0ZhSf9Pl2P8SNn2F9/fXX4m1acRzicw7gm2+++Tku+53rq6++ Evf9lhCj8D5DrIa/SSj7ANvLgnA4/x3x8YX6Aly9dvXfF/A9YjMsw9k+yLp5 86Z4e7o2C1uznRGzX4LC2lwkVu3HP87twdDQje/1eT9mGTDkV6QhqzBVvP+v eLn++XXUNlfhyy+/FB9//vnneKNiNR79uwSzPpbgWPF72H/hJZRUnLnvZ/1U y3CNhtZqxPZsxuuFMcgsTRCfM5y1YRkelzUUI//mUbxfsQeDlwZRWJWDtXES RAk49o/E77OfxK64xbdx/hxaEa4h8D44OIDc2ljsq1iOnedmILciZRjOO3Hk N6cjvvl9vJj9FFIb4/CXso0If0uCye8Tx3vjsOoDR/zp8HPi5964cUP8u5+D E8N5Cflxvu0I/lK5BNsL56CsumgYFuF9wj7Tm4aPavdie8Y2HGz9IxYwftfX JQj8vQRzdo1F9HYTpOQc/87r/LvxGLR49epnKOw7hF3no7H7/Dp8cuUT8TXh +sLttevXUHg1BX/MewkHG97Bcye8oVonQcAOc0x51QjRG03x65VuOLtzO8pf fx3VO19Hw76/orWo+Pa17vS6n2oZztjw+cLq7OpA1uCb+NWZMPyt8C3xOUOu F5YX4Hjbe/iodC92pc9DxHIJXt7ihw+fUeFgyHiUzQyDbsUy6GfPxmDgFPQ5 eUMnc8VlK2c0L12BxvzTw679Uy8hh4Xzvq3lprPYU78eK0vmoKGzXnyupa0Z BYOJ2H92N/6cvAyvrVWg4LFwNARoUcZyW6FRoGvdcjRNC0eN1h2Vdo6okjqg 0kyN0xIpSkbL0TdBg5pXX8MQdSOsn8qTr7FOCR5/Jx5hC+efNBiLlUWLsb1k E3bkrMDurCfwUd4rOJK0CbkvxODyqifxafQs9PsFo83NCxVhk6F7eT1qwwKR Os4amSZyFBnJccZOi8onY5BjrUKakQx1Ejv0vPACr31NvOaP4cWQQ5UN5Th+ 5T0cLz6ILl3HsNfL6krxlm4nltBTFxyWYMYeCd7ZHYjGl9bgswWPQxfA+JUu aLDVoEqhRbncHoXmcmRbynHkESscM7JGkpEtEhh72cpwlC70FO/HjZGh8ZkI 9Ox9GTeHhn60XgycZpTF452eF7Ct+jH87fzb1PZl8fkhXuPdik2Y/Y4EMX+T 4Fd/DkL2EzHoCo1Es4szaqw1qLTRoMLOAWVqJ5Q5u6BI44QcSyVOMH4Bx6FH rHFgnCU+lJgizcERqdZqnJBY46S9Ay7OCkHNa7uGneuDLEOtEP7GkD83vs3T Y+V/xpKzkxFWaIaXzqzF2aJcVDfk4vn3xmD+CxKsWm6GNwLs8Q/JI8hRaHBR 5YwyhQNKVQ4od3RGhbcXyjw8cI685ErVOGkiQ/wjNogdb0UcUuw3kiJ2jBVO GMuQwnxLm6hElpUj9GaO6Cwu+d5Y/tXaU/88Nqc9iv0Zz6Ccvd6pD9djWSQx qI3xBnV8mLtqrRrVy4ORM1GKSic3VLq5oTbEV7wt0brijNoRGZPskGLGeM3k OE5ODkrMEPuwDY5OtEMCMSRPkvM1JTIt1CiSatG6as2w/LjfGro5hO6+ThTX FiLjYgJiT7+Hv2b/DodPv4v4/H04XrQbe9//BXJeXYKm9Y8h0UuBHZIRzAkJ crjPctcssUfLSieUWEpRF+iL5lA/1Pu64eKi6SieGYLshyyRwlxKMbFFloUC J2zViKd+jo60QqJUgxOWGiQz/pPcSbYOOCpzQrudG9oLzz8QJ/36PuyofBq/ rl2M9SX+2JhniTUpEjxB/S76kwRevxyDgBAJDvjZYXDxQlyeNQ+99KBiUwvk SkaJvto+aTQapGZoUsvQ4u2OllB/dIb7oU6jRnvsU9AlzkO2ygQZI6yQNtoc SRILnI7xQ+8f5iBBKsNJOxekKFzFnWzhhPxwf1Q/P4N+5oauX/36vjgMdeGV rK14NnsutqUE49lECbYckGDlaxL4PWaOeVojJBs9hC9mzoE+cjp0nl7oc3VD r68HWrVqtFiYosdHix5Pe3SamNFntWgP9kJHgDvaXbSo9nNE02+oj2glTo2T IUNizm2CJFMparc64nSUC06YOyNN44Y0tTvSNZ5IVTujdK0WSbxOl38Ern76 qRjvvbzLkHdCj7EjdwPWxlpi5ZvM+xclePZpR+z1cUAmz7thvBQ6Pz/omPe9 Lm70VR/omDNdUe4YCCWGEA90Brqj09UeHa5atHk6o93LCW0eWjSoNDhnZIEC qQ1yjajhkawfxJEmsUKStQ3SPWypfS3SZc5IV7oi3Z44TF2QqFbgY40GrTIP NJzKfSBOhNXT14O98RuwbacUJ/60CvUrluCMkPc+9I3Ny9GqtIfO3RO9ft4Y CPZB74xAdFbsRM/TMvRYydDBuDvtlehwUhGDC1q9XdDk7oRqRw3KLKypIWOc klgim/FnClhMlMiQOiL5YSVrIOugtSOxuCJN7o40W1fET3QgFnoFc67m97vF GO+eF+5ed/I1oOvBJy+/gm5PX1Tzut0r5kL3l9VoVSnIgy/0zP3LoT7oj/BE T9Jz6N4dgLax49GulKFdboMOjRytrAFN3h6o02pRYWOHUjMrnJdMpJ6MicMC WePkyJLaI5P9SZqlPTf5kLsiw96DOKgRW2cc5+sn5U64QJ7av/WtB6mJBqyd O/+Aq/MXQBcxHXq3APSGBKN1RRjaHbXoC/FHf6gvBsJ8cHmyB7qD6SlLvNFq KxVxdFiaoV5ihLpQnqOrM8qNrVDysDmKjS1RyHqXTxw5kknInCBHpnD+tk7I EG4Zu8DBiTEapCrdccLaCXH0ryS5M04RR09oFK4/QK9iyLvG1FR8PfdR6CJn Qe8/BXqfEPalXuhWu6DXi/oO8kP/FAGLDwam+0Hvp0UXc7zN0YGa1qCZeVi9 yB+9zdtQudwCFyRC/OPIhSnOT7RmT2iOVGLJmKgiF05iLqVyZ1i7IpG5eXap L9LdvJFo64Jj9N8E9l9p9N9+e1/0NTcP08F35ZSwhT7zysZnoY+Ygb4pkej3 mQy9dzD6Xb2g92Ae+fCz/LmDuOmtfdSAzs8F3dSP6FGevFWrUOmjhi59PWo2 maKAdfss6/w54jg3xhp51FjFtqlIU1Dfpg5INef5W2tZU7RI9lRjMHEq8ue5 I36SGxKsHZBALlLVruihZhrOnB125vfioqe2Dl/PmI/esOnoC5wKfRDnBQdP 8uFJXgIwEBDI5+n5rM89rG3ta8LRqrZCt7czuoinQ/Cvqax99lqU+jqgKoY+ RU0USCaQExNyQVyRPviEc37BPKGGqFgXWb9NVEhlH3Kcui5dK0VmsDXiTMiP hQNOyIjHwRsdKk+UJiUNy/974ag7mYgvo+dBNzWKGMKZPxHQ/XYdOqdS29T8 QHAQ9CFB6KaPdr+0Drq/r0S5QoIu9k5CregI8BTrRktYgNjjFlMHhdRKAfPq DHPpHHMqjT5VtVGD4nnGODFSgWSJLZLZ4540EXpEBRJsFEi0U+H4eC3iiTPL yxPn185Eo9oXRXFx98Rh0IyQc5+n7UPf5GnQT6M2gqdBFxaJvqOvoeuxQPQ7 e4oYBqcEYoAaaWQN7Hh1JWq8LdDu5IJmL3e0+nqixd+Lr3mh2skVZez/zkke JoaxxGJEPkazbpgjmf1VhoZ9+0gZOSGOEXZI4hwl3D/GmerwCFvEGatxlDgy yGvZZh/UO0/GhSNH/iUfBiz6+A9weSo9ipzoQ6ejP4R8bFiGng0x1IgH9FOC MRgajEtRU6kTL+YPa4UvPdHNHc0ebsRBLvy80MBd6+ONMplKrBmnyUcuNXKK O5txZnIOTDF2QPJDdrcwjLQlF7ZIlNgQhwV7TimOjlHi6ENKHJYqkTzVE42O fiiOj3+gvKrPTMfQ/F+gf1YM9NTIQPRc9E+Lgi48nLhC6bWTuUMwEB6CS5FT mGd+7Ec8WPOYT96eaCOOVuJrDfJGpZWKXFgSgwnjnyjWvxzGl81ZKdOa9YK9 7MkJKuYU+0XyImBI4I7ne+I4gxwTcBip8fEkDQ6zprQq3VCc8N3fnf0/nVde BJY+gT767kD0HAxEzcTA7BgMRM5grk3DAGfrgfAwEYc+nD422R89jL3j2y1g 6QzyYW/IuXthMGqe8UG2qSlyRtkhZ7wMOWPskGWkYA3XiH570sweSWOJQ/J/ OBI418ZxxxPDIWMNPjJR4KitVux7a7JzhsV7r7wSerEbT23CwKOLMTh3gciH PnqmiGNg2vRbWCLCMRhFDU0JQhd9qpP5JPDR5ukh4ugO8UOVmS2a9v4Sl47N RaaPhBxoOAeqkTXamv2uFGlj5aI/CXwkiRhkjN+W9+WIm8BZRKlA3CMOOGhG HKa8b6VBJ2tkR1n5bS3faxlea3/jDVxbvBQDC7ln3dLJAHNLzz0wLYI4IqiP 6egKDkTvu8+ibi5nDnsnNHMubaVOOny90ebuivMurmj4r2AUTmUvYqwiL2pq nPMrcyyFfUqSXPNt/NYiF4LO43h7eqknmvf6ItbUCbGsLQfM6WGshx0uAbjU 23tfHIacaz2Xg+sbiWHOYlxavIQ5Rr37sx6KfEwXsVyaMRPdrCW9v3sejc8F otbGGs129mhkjWtln91OH67lTJcn1A3GnM95NXus0OMase7J0fHBYpRsMKYf 2TB2C2rCUtRIHPnIjJCjZos9uXAUcXzMz0myVKE1LApffvHFsPy5Fx/C692d nRg6/L/QT5+JwWWr0XdwO7pmerEGUuvhxEIvHoiIos6j0entj5b5U4jJA01W ajRYq8iLExrlDqizUaJslAU9dwLxSMWeKoc40oip/Y25qNogEefaOPa+graF vEp+SIEjI6l19nFHLLQ4SByx9IR0c37u8ifuy8XdudVWU4OvnlyHvuhHcem5 DejeNAd9zn6ihwk49KHMr/BIXJoagX7WR2GuarbhPMXa16zivGGrQhVn1+KR 5vQsE5GXHNGzJoq5lSqzQ16wTPTahNv6/lYnY1Q4Qj0dMiUG5uLHVs7IU3ji IvvvO/PmfsvwvqbYw8AK8hFFjUyfwVoyTdSKPpR91xT6VhB9OCQMg9z97L16 nN3QqeXMoXYUcVRPtEPJaMs7cJghe4Q1fcsWmfSpkyb2rCHMmdGshaMVIpZj Yt2Q06eUOMg+cj/5SWVv0LJqNsoPHPxeOO58r/7Nt/HlytXQz6d/zXmU/eMs kRMRE3HoBd34hYi9V5+Ht4iljZpvZI7VEEfpWKnYH+YRSzbruFA7BN/KYf+X zd4w3dxenD0EnzpGr40dYYMj9OHY8UpyocQ/2Ldkz/ZhTkWi6cKt77J/yHdZ wm8FPa/uxI3lxPLYMgzOmEcubtV5oY/sZ0/fz35Y70kc7t7odqH3apzQxByr M5OTEzlK2e+ekowX63g28z2bcWdbOSCLO5uzUtpYNfJm++HibzxxSKqm39qL fBxiTh0ytUecswcq2HtfuXz5dmzfZxm08hlrSs8rO/DF46ugi1l0iwe3kFt9 pM8U6oO9l0cA+y/y4UCvUtODrTVosuMsonLkHCjDBQ81kqUWOPkw6yA5EObA HPYmeZz10tkbljxNft+dijjOGcIse5Q5ddhMjcO2Dsw/JYrmL/pBGO7GIvDS t+d/8M3Kteje9yo6YyYzj4jFP5SezO0pcOKPLo0L6serRC4ELF0yLc4w1r79 z6JorRHiRpkgl724gCHXSotczrT5nMdzmItnwwKJ1YW9uwrH2McfMSMWC9Yd YwWqH+B7nwfFIpxF8/t/B158ET3UXRfjHgiJFLXf58a59/FfoG/f02h0t0X5 SDtU0V9b6Jk1jKvIxwsVUc7It1WgQOqE05xl87lz7VxwSu6CbJkLz519I3up BL4/njl1hHzEmitROFGJ+o8OiDF8H41/17rz95yGzEx8sXYTri9kjWQ/2T99 DutKNDqol45lM9A1jz0v4yobI2CRo3aSAmUSQe/WuMAzLrSyxxnqvMDWEXl2 zqLeM5hnKdRGEr02kXNIPPVxdJIKh0yoMWqkq7pm2Jn+WCwGXvt7eljL3gRW rcOVxcvRN3uB6GX9rsw3LWdzpSuaGE+dhQaVzO8yclM83g4XjOQonKTEWQGL jQPybRxxijgEzaeaCzg4j4+Q4dgoJedZF9ZxNZrZ4wk8/NS/T92Zo23FJRjc uQugbj5d9Djr5lzoBC9zD4JO4YYW1rmLrAtlzPFSI+F3GxlndMG/6F2jFPRg e5ySCttB7IFPjlcg08UFtdsCkejhi3JyUf/2u+K1fmxOfdcy+LJhtZw9B90f 9mBoxRoMLV0mctOloQ+vXIhWzillo2xQOkGBWu4i9rnNWxfgfJQSWZz5CsjH aQt7EVPOw/TgYHc0bJ2NNEdv8TunS319w/L637Hu/q2oq64O9UeP4Nrxfbi5 dAmur16GgWXRaKEWapgzHazj9TzjizNCURPljRLOIEXk4hzrSj73aXJTQO/N cfBGv4pz5cHY29f5OZbhd2fD+oJ9aUNZKZp+uwOfLliGm6HR+Mw3DL1qzvTs /+pZu6s4e1eRhypiq2BNKSfOUnpUBf3qKvup7t1//Fkx3LkMv2fduT67cgV1 nOOad+3GZ6ylNydH4boXaw/PvJe+22vhBJ21C/XkgWvU1VDkXNR98OHtz/tP /h8ng7fdjUmYNxvz8tDw1tvQb3sRA8ufRD97N/1i5t/mLWjY9z56Wlpuf8Z/ EsPd616YhCX8/njt6tXb85Fh/ZBc+idICirR "], {{0, 50}, {50, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{50., Automatic}, ImageSizeRaw->{50, 50}, PlotRange->{{0, 50}, {0, 50}}]\), \!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztmgdYlWeWx5ns7uxOyU52kh2TySRRxw4qWEEFpKkoXQE7KCh2ERS7WFAh QSEaQYIRQaUEFUWNUWNFo2IBGwqYCNxLVaT38tvzfQQnZjI7ZfMkmX3yPs/x k8v13vP7/ud/3vPea6fpC51mvqSjo+P7H/KH07SlZj4+05aPfUV+cF7gO9tr wQxP6wWLZ3jN8DGc/i/yYL+v4l8l+Gn9tH5aP61/4tXa2kpzc7N6/f+ympqa /ql42nNtaGhg76HNPMi4SXV11fPf/7PwKHkq6/T541x7sJ0yzWm4kMjjlAtU lJe/8LyWlpYfKs2/upR7rUT0YX8yHyeRn/wh9ev9IWwbHIzji3NneFJS8vz5 in9+bDxKTsq6mZbKmRtBPLpziIqQ9TSuXEPjhg20Bm2GnR9AbDRZJ46Tr9G8 8G9/LDztHLs/3sS9L2PRHP+QOl9fmrz9aFmxhta162nZEABKhGyFyAi0R5Mp yMl5/hoKyw/J0/7e+QVaDpxeSWbGQYpD11E/fR5NMxfSMtcHfJbC8jXc8l5A wRI/WL0OtgbDvigKT35CTnb2C6/3Q/C0+/vYqTiu3N3Bo5QYynwWUjd+Bo2T Z9PsPge8FnF68hSWOFhQ7LtEZWL9egiUegt7Hz6OofDEMb58+OAFnnadv4/V fu92H1jL3ax4cuJCqJziSZ3TNBpdZ9AyyYtG97nY9e+Lt9FAmCscfithrWgS FNimS+i7sGs7JMaQfzyZrIz7PwiPNl9DwqfLybibSEHwKiodJ1NjO4kGRzea XadTP3Eml+ydKZnkCbN9YdEyWLUWAsQv7wlL6HuwfSut2+UatQOS9qH9JJmH d+58rzxnL37K6auBPLi8n+Il8ym3dqV6pDP1thNocpxCk7M7iC64zYMZC2G+ aLJkBfgLyyaFReprq2iyPZiWsBAJ0Sg6TOXJO3aIjPT074UnOjGEy2nhZB6P pMRjGuUWDlSZ21M70olGu4m0OE2l2WUarZNnwbT5MHPRn1hW+4tXhCVwIwSL Nu8Lz44tKk/rB8Ft+iRGUXryKDmZD5+/Z/sM912unbF+XEmL4lHsVkrGT6TM 2IYK4zHUDLelwXocTQ6TaHEWDvE+U4TFXdHFG+YtlhqTXrZslWgjvt+4QTwj PFuEJ+Rdlan1/WCJIIgIlX4QRX3KOXLu3/vOeWrragmPm8u1G/vJjgygxNGF UkNryo1GUDV0FLUW9jTautDsOLWNZYJ4RNFFqTFPqTEv4ZkvPIuX0bpqFS1r pdY2CtNmRaOANq5gqbuQIFpChE/RKP4j6k8dI/PO7Rdy+b/M2Ll5OXx0aA6p V/eTFbqKYruxPBlkSdkACyoMLak2GUP9CCcaxriILlNoHudGi8t0mKj4Za5a Z60eUmvzvvK/33Jal0u9rRSNVq8WnfzbuAK/8pHo1LxlE4TLfnpwL9XnTpJ9 +895/t6VfvsW0UcXknopluzgZRTYOFHcz4ynfYwpk2ulkRU1pqOptXQQHmca R4v37RUed1pdPWidJLU2dQ4Nk73ImCZazfFRmVrnC5fMA62+St0pPUH2nADp 1ZvWqzyN720kZ6Owhoeo9VYl+jxMT/uHea6kXmL/Jz5cvbCPzHf9yLdxpFDf lJKeRjztNYQyAxMqB1vSYmRNs6kNDVaizejxNNlMpMluEk1ObuDiQayDHYEO I0SjOapOLTIPtM5YIH1a6Qm+Kk+rn+i1ciWtG9aT6OVOhNtYGgPFU0q97ZB6 S4iiRuG5dfOF+vpbeK6kpqgcV4QjI3gpGgcn8vuaUvjHQRR3GUBpDyMqRJMU ezuKTEfRPGyMeEa0sRorGjmB9XjSrB0x0u9OkrUNyN7Z7OwpPvJq89HU2Wrd tcqM0zxHmHyWcXzKVOz79yRkjJXsp/7iJZlFxUPNW6XuPpA9KHYXVZ8kkXE9 9YUZ53/zz6206+w5Mp9LF/Zyd9sK8pyd0egPp6Bzfwo7GfBMdwh7LM3xtjdH YzyCBgMzqo2tqVF4htnQZOFEhrktGwcYUmMvfc1BerST1JzzdKk7qbnxM9tC /NSoaDXLh31O4xj6x45ccBmv9roW6Q+sU/Yi0ebdTTQFyTVYPLQ7jJojB7l/ 7eoLmnwbT07uY8ITPLl4YQ/pEet4PMmVvIHmaDsPpPBNfbL0h2BqoIt/3z7U 6hpRbmBKZX9zqgeLb4aOlj5gS7WZPViNo2GkK41jJqj1pvY34WkZKx5SQtFI omnCDMrEU0UTpVeIRq3qHOqn9gdWSV9Ys0b1UrNEwyqZf9YI4wcyKx2I487V z2lsbPxWnvqGekJjPPnsQjg3ZP/4wmMyeUOt0AiH9g/6ZIsmSZ168eit3lT2 GKTqU957GJXCUzXInBrDkao2Ck+d1FmDlfPXeCbTbCuh9AUH6XOO7qKVh/QI D1UjZXZDZjfVR0p/WKDsR9IbFi2h1Xsxzd5ydvBZQr2PPO4vTAnhPEk9xs2b n6vn72+ukKjFJH8WwLXDO8ma50GemTV5PYegfduAvA66PP1VN4p/14uSzgbi l4GU9RysslTom7RpYziCGiPZa4yFxcSeejNH6i3H0jDChcaR46XHSU8YIxrZ KExTVaZmYVJ0anHxVHteq+yvrVJ3LdPm0Cw9osVjnlzn0uQ5j8b53tT7r6B8 12bK0+Oorb/Cl1+cITX1HLW1tc859h3cSXTyXC6d2s2DZXPIHWFLnvRcTad+ aF/vjea1XuS/2o2iN3V58nZfSrv0FxZDyntJD+hrLNoMp0r2m+qBUmuGo9So H2JDnakd9eaikYVoZKUwiU6jpNd9xdX0dS4lpA6bZa9lnNTcWEUzOTtM8aJh wQLqglZTfiIczeOjfJl7Am1BHJeyZuMfNZX6+nqVQ9lDgqIc+OzcLtK2rCJX elae9Ki8boPV2tK+onD0oOA33SiUKBGNSjv3kxozVHkqew2VGEZVb2OqpUfU GEi99bOkdsAI6gxHtzEZC9NwBxqEq958nBoNFmNVvgbr8eq+1Chs2E4l39Wd i25TqVPq0n0mtcsWURkdROHdeDQFn/I4L4kb99fhF/M23jtcn/tE8c6GiCkk ndzE5aRwsma6obG0adPknTZN8n+ni/bnXcj/eWcK/70Lxa/25Ok7fdt4FH26 DqJc9pwKvSFUKUy6wqRnQnWf4W1Mg0dSZ9TGVD/MVg21Boc7qprVWzrTLHVY LD1ii4sdAQ6WaO2caVm4gMr311J0KYq8vGPCIPPMFzuJOG7O3D1vER6/RdWi /TwYm7Sb8I8nc+ZcDGnbVpMrvVFjMoo83aGiiQHa1/7Ekf9SJwp+9g5F/9Wd ijd6U/FmH0rf0aes44C26DKIiq6DqepmRHX3IVQrTH1MqfmKqa7/COoHjVKj VuERX1Wb2MFwJ+JNrRjWpxtz+/WlZMoUajYvo+REGLlfHCYn7wRZX+7j2Ofu eH34Mkv2WnHqwqdq/u2f9zx79owV7ztw6EQAF09Fc3/NAvJsHNAYWZInuWg6 9FHrS/tyd7Q6ncj/RRdKO+jx5Vt6FL+uy7NXevBEfi59oy/Pfi9Mwl4ue1CF 7KdV3Qyp6mKoctXomtDY3YSmPuayF4mf+lpRO3CUzAyj1eslqWfHbl3Yazac 2lXeFCcGk/sgURiOiw4JXEpbypKoN5gV2RG/XZMo+cZnUcr65Ew8wXvH8OmZ CC4ny3lkvgdai9FoBlmoLNo/SI29pofml93FI3rcMhhMgI0F9zrrUa7TmaL/ FJb/ll4gzKUSbTz6lHcUnncGUvnHwdR2H8bZkdZcMbWkqedwqT1zqvpYUKlv ITOdOUVGI8kZY0+572yKYzaTcztWfH2Uh9mJ3Ly3mfcO9Mf9g5fxiRlEyP71 L+T/9T1lU8QcIhOmiuejuRofyiOPKWikDyu6aPSGSS8eQL7kl911AAvNhjJn SD9yftmV4pe6im+kp/2nLsW/EE7R7slvpR8It8JU+oY+lW/246rlaBbambHb yJD6PxhS0U3m0V6mlPUxo0zOCaXOrpQunk1hVAA5N2J49PgImY8Ocut+KNGn RjNxqw5ekW+zKNac859/9oI3lKXMMQqHRqvBN9SCvQfni1f2cW1/CNmzppFn bSt+GUHeAFMKpE6u6A5mWM8uhHfsSqlON7SiUeGveghHT4p+2aON5dc920KY Cn+jS8XbA1k6xBATgx4k9tSn7vXBPBWOZ9LjykxGUjZxPM+Wz6MoZhOPb+wl WzzxMOsg6fd3kHDOmWnbdHAJfY1Z0X1ZGe0me0fNc198fbXrc+lqCou3DRTv e6ssVw/sUP2S4zYJrdNYNOYjyTQw5nPpVZoOfSl4w4DCDvoUvtZbQo/C3/Zu 0+UV8c7LEq/2IV/+/qRDP7br9ce7UxdyO8ls0H0oT/sPp9RyDKVuE3m61htt wrs8urmP7OxkMjIPcOvudg6cm4DHtp9hu1kHt7BeTN89lKNnD/2ZFt/G8vHh /Xhv0yVGzlinz+3h8mfR3N4bSNZGX3LnT0c7zokis1FoB8pMKfVWKD4ufEuZ yfqrUfT7gbJvyvX1fhT/vu2q+Cu/40DRYIia/xNzpY7k3CY+LJRZOyc5lMy0 eNHgKPcfJpJ6O4SYU/a4h+pgtU4Hxy1vMimsB+sTZqr7eHsN/aXVzhh3MBqv 4K5ExE/g5NkdpFzez3XZK+/GB/FF8BLyfGeQP3Ui+bZ2FEjNFUhuhX1MKJI+ W9xTiWFtIb27RB4v6S/nAeV5o8ZQ4urMkznuFK33Jjc6gMzzkWTcPST5H+P2 vf2k3PDngyRjnAN1MPNXGDpIdGbWXguuyXz1TX//NZZzKWeZGzyM96RXHz6x kouXPyL1+n7SUj7i3hHxTsRqcvznkT/LjcIJrhTaOVA0yoaiETYUy7VYfFVi a0+x3PcSYS5WcvebRUGg6Bq1nuxTO8i4lUBGxlHu3Zd9Oj2c5POeLP3obUat 1cFizUs4BXfCfbseixLN+PjTPX8zwzdrrKi4iKBdfviG68kcNoGzF96V81cM 19PiSLu2jztndvIwQTTavpzc9QvQLJc8JdfC5bMpWDMf7UZvNFuXkhvpz+O4 zTw6FsrDi7t4kP6xmv8diZu3ozh7ZQXbDxkzXjQwXaHDmM2/Zpr4YXKoHquO jCZZzkh/L8M3WZR19uIplmyzJWCf9ICjU8Q36/j8WgTX02NJT0/kzvU47qbI rHk2godyn7NPh5F1fieZlyN5mBoteceTcU/ORQ+OcO/BMe7I/b95e7fkv5IP j4zEU3xgslw0kDoaF9KRmRG9cd+px+ZjriSl7PuHGdqX4qX286Uy9+9PimRe qBF+kV0JiR9O7DE3Tp/358r1MMkrVvI7KHkellr/KjKT5HpIHksg/W6MWjsp qZtIOjuT4ITBuAdL7it1sJT8Xba8g9OWLjiH9mDZISsiTi+V17ymvvdf8/Xf ur5+L6qqqkj8ZC8+IWOZEPAqM97/NUsjOxG0fwi7DjuSeNKDo+cXcCLFh5MS R8/PIu7UBMKSzFkT1QOPrf+GvfQga8l9wpbXmR9pwOJ9xiyON2NenBVBybOl t8ZTV1f3Z+/9Xaxv+/wvM+uhaBTF8tDpTNzQF1v/n+OwUYexm3RwDWoLF6n5 cdL/lccnbnmN2eHdWR5rysZkR3acnc6O8zMJ+8yXvWcCuCBnPuU+fdv9+67X X/qOXZk3b6Xd5MCROCLlnBy4cwkrQmYJoycB4Z4ERnoRvGcRW2L8CI5eRlhC IHHJuzibcgqtVvvCa33f3+ErdftdfY/7Y/k/CO15KFztbN+WU/tc1H4Pfkzf l/6Q638AhGyg8A== "], {{0, 50}, {50, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{50, 50}, PlotRange->{{0, 50}, {0, 50}}]\), \!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzNWQlYT2n7PmPm8v+G8TEUKvuWkijVr0VpU9lCZIloE6GUjC0jYxlLH7Iv M/MZ+5q1iCiVUlqplIixVFooS8l6f/c5Ol0hM9/MmPn+73U9nXPec87z3vez vc/51d5tmoNnPUEQ/P/BPw6usyymT3edM6wJLxx9/L0m+kzw6OczY8LECdMN 3T7npG61fEHBr4w3b97g9evXePnyJV69eiVd/57xZ979FENcX1y7rlH+qBy5 eTmIjo9E+Lkw7D+yG7sPbsNOyqHjexFzMRI3b+fhydMnH7wrcvo7+Mj2l4fI 5dqNbJyMDkHw7gDM2jwcrkFGGDC3Ayz928B2ZkcMX6AJ+4CO6OvfCpY+ajDz bg5L37YYOlcB/1WjsXH3SiSmxEkcauv9O/hkZKfjhyMrMPOnMXDfYITJW43h vLI78XeEzTdtYTlDBQMD2mOwyMdXBSZezWA8uQkUkxqhN8/NJinD2KMpdF0b QzGhGQx5PXaeDbYd3oD7RYU169S22acYom1EefCgFKvDZ2DG9j5wCtLAqCWd 4fR9Fwyc1x4D53fAkCUdMHhRB4xd3hUOC9vBfLoS+vg1g+l04vduDNvpKrCY qgyFR0Mo3BrBwP0r6POoTz4m5GM6WQX23+hi055VqKiokNb+WPz+kSHriomL xOR12vj2kCMWhozHrG22cF+pgxFL1DF0cUcMWNAKwxd1xODA9rCeo4r+ga1g G9gCtvNaYgj9Y+lLDpMa0jdfwdCrEYwmNoSFlxJMJzaV+Oi4fIUeY+vDkJyc 5tvi6rWsT8pF9sdT5uaaXX5wXamHgANjsOyEF74/5oZ5+0dg9s5B8PvJClM2 GWPk910xjHz6zVfDwEBVXneE1WxlmPk3Rh9/2t3vnzD3UYKtnxp90FTyi55b A+jzaDapBcw8m0Ph3gQ2ft0Qdyn6k3MRhxizngsV8N5kg0ByWRU+GcvDvRF0 ZhqCTvtgbaQPgiLIL3Q85h4cglk77Zg/RnAO1sLIFZ1hv6A17OaoMffbwnSa EoynNpVypw/z38antcRBx+Wf0B3fFArXZpxXw4Xk6Jq1P8WQa8qxU7vgOLMN /H8ejLm7HPDdoVH0iyuWnZqI5acmIZhcgqOmY23MDKw4OxnLTrpi8fGRmLtv AGbssIT3FiNM2aAHt9XaUi45fteZdU0d1r6qMPFUgjl9Yu6pBhNXFRi7qMLc u0NNjH0qLvLeMXGOMTyWGCNg/zDM2z0YC0JGYWmoO5aGeWA5cQdHeWFdjB82 X/DHqkgvrAh3w9KTzpKfFh4dhYB9gzB7tw1m7rSA3zZTeG1SwDO4F9yDesBt hTZGBHRBX682sPFqD5spXeEUaIry8rKaGP+zQ47T83HhmLq4F3acCkbgYQcs DmHuH3GiPyZgZfgEBBF3cKQn1kb7YGv8N9h4YTp5TcOWOH9sjp+JTXHf8NoX a6K8KV6USYxNDyw6Pg6Bh5wQsGsY/LcMhM96O/hu7YfAHU6syQWfjIc4ZN+u 2OKIkFM/IS7lPHNjPFZGOL21efg4fB82ln4Zi9Xn3LE+1hs/JAbg35fm44eL s/HvhDnYlvQtfuT1T0mB5DYH62PIL9YP66J8sOrMFKw4PQELj43E0kPjceLc 3pq1P+X+KPskOSUGi7bqSryKS4qwKyIYK845Yl3ceKyOc+H5ONp4HO0+ERvj pkl+2Bw/C2vP+2FD1DSsi/TGCubUspPj6YfRCDw6GPOP2eK7w0OwPmQ2YhLO 4MWLF38JB3nIPlm/cyi2H1peM//4ySMkpkZh79mV2BQ1E0tOjcHiU8OwIdYD 6+M9sOoCuZ0fg0XhQ7Eo1AHLIhyw5IgzNobOwJ7TGxCXFoVHj8s/sNtf1afI PomMDcG3m7uhsrLynR5JHgWF+fD6lnV3bnPEJ0fgUlo8ElJikZ6VjOu3clFa XlLn3iDO/R19lpxvL16+wKo9ejgY+m9pXowDcX25HxdHWdlDTJljAJ8AIzx7 9qxOfbXf+bt7eNn+JyLW4NuNBtL5+xhkLiWlxZgaoAWvgJ64c+eWNPf8+fNP Wn/+6JBzpLS0CCv3K7GHiJQwvR8n8nV+/h14B3aCm78mbt66Ls3VFYv/iyFj 3H3aGYs2jZLO69pz5edu5F3FpDkt4DytE7JzMqW5/w9c5HhOzTiBRXu/xL38 29J8XVxkvCnpFzHWrx6cvNvi8pWUd+79r4Yc25WVFQg+1hKb9yySrj+GS54/ GxWKMT4Chk5sgaTk+I++I8epeE+Wv6oWyDGz/cRE+K7tUrN3fWytmn7z5HaJ Sz9XZcQnxtbcE98Tj7/VE4rrfspvRtk+SelnsGCPgPMXTtVgqT1q1yb53rZ9 QRg1RYDVmK8RG3/+A90Pi4uREx2L5L0HcX3HAaTsP4Lrl5JR+bTig/X/7JB1 PHtWgaAjX2LmMvsarLLUtpv8e09VVZV0/a9N0zCaXIwdGyD6QhTKSx8gbcd+ XPb0xxW9AUjvYok0DStc6tgHl9uaI72tGTItRyJp4Qrcyrr6jt4/O+TY+vGE M9wXCigsvFcn3/fXEvmI+4jvUgfYTxCgPagBfuhrjay2VgjvYoJQA1ucthiC qO5WiFYzwfkWhohSUiBaWYEUFRNkqFshcelqvKCOP8tFfFe2bXxmBIZuEbDz wBoU3b2L3GMn8cuaLSj0DkCOgwcy7V2R7eqL1KB1uJmSVqPjRnYWXFyaw9Jd gIqhAC+NTthhZY9zo91xUTEAyU2MkCLoUXogUeiJxHr6iGtMPl8rkKbaGxlj JqO4oOAPcXl/z6t4+hQ5kadxxrsHcocMBYzHAKr9gM/64Hl9M1Q0MENZY1MU KpnhvqoFipUscdXJG1lHQ5Hs4IaNzTrAcqiAegMEaKh/jrMDRyK5ryOyvjDA VUEHWYIuj3rS8Qq5JPF4kdfRzQxxsYURkiwdUXD7zu/iUjuv7mZl417wVmCU P2DkBui6AlYewKCJgP1k8hkHNOkPfG4DCNZ4LVjhSX1rFDQ1x73PeqNIUBBT DxwSNOGi0gTaOgI2KjVDTBcFLne2Qo7QC7mCAe52H4wiGzfc+doaeYKhxCmV /BIoMc2MEE8uacM9pBgTefxW7sv3q9jz5S5fB1gStzVxj/YDZi8Dgn9iEQ4B 9ocBPx8GlpGjHfkIdhRbSl+KFV5SSuqZ4w7xFAldkU48hyzsEdLdEOFftEZC E9q/ngGuC/oo7O2EZ6u24eX3W/HUwRclOqPwi9BH4pJG34hcopQMpRi7tGWb hO/XfmORc1XkcNd3PqBujxemTmCRAnYS81nuA3Hco1MygPQc4BKPYdHA4i2A Jp8TBlH6S36BYIpKwQTFjI8iQR3lQnOkq1szt60QK3RDSn09CWdB10F4vm4n cCoOWLUL8FyCqsG+KO40FDcFYz6jSxv0xMXP9BFJLpdZ4x6VlX0QN7WHHHc5 S9fiaecBeKrDPJhFDofDgUTmbXoWcIX4M3KBrBuUPCA2FdiwD+g/DdBhjHUc QQ4DKH3IQ0EO2rgvdMZDQQ2lgjLOMb7O1e9JO+vhbjtbvAhcD8RQx26u4bsG GD4X6DsFT3o44R59eoNxl0l/JJOPWMuSVUyRumu/hLOuHkHmcDvtCkp72qOg tSVeOE7Fm91HgdPcw85eAMJ5PHwa2MuYOnCKTT2vD0XwY347MHUFMIF9y4iZ gJk70HIQHtOeRYIWeXQkh1aoII9MoS3OKRvius4QVEznt2ZoDHCEegJ+AIbM A2ym0x4uqGw1lL60xC3yzWZ+XSaX+MYGiBHzxN33Hcy1hxxvqQFLcLtTXxS3 t0XVmGl4vZrxH8S4CQgCJjPW3Gkv9wBgUiAw41/MmWDAfxX9Fvz2XJxzD8QL s/H0gakUU8VCG/JQxROhBTk1RbqOPR4v3MAcow9CImkHxtOo7+iHGYDJVKDt aFQx30qF3rgt1YEerGE6uMjaJvokxWBQnbEln4u19ZrlKGSrmSG/tRUe2YxF lfsMvBzvj1dDPPHGknFj5QLYMu8HetH2zH0n2n/cHMCF3DzIzWM+Xo+bjad9 xhG/6I9OKCGHUnIoE1pS6uMXW1c8F/PqGGXVXmDMQtYTsR6SQ1fWlXqDGZPm fEfBOqHLWtADGVK+60k84tv1we0beR/4RD6/mZmJ6x0tcVnZGLcaEYNWP5T3 H4+KwZ6o7DsOVRZj8cp6PO1GLn1Zg+08yYe1ahA59ee5tRte9h6LCv2RKO3U H/lct5AxVSLlhshDVeKRb0h77zkJLP2ZtqCPjYlfbxJzi3aq78BaZ8m6YEgb 6JKHNnlo0R/dpf0kUlkfF9m73Mq9/gEPOaZuxSfjemtzpCkZ0Zc6uPO5Ae53 sEZptwEo68F413NAJetXlYUzXpk747X5OPrIBW+sXfC6jzNe6Dmisqs9ytTs UFivt4QhX+hAv6hIOf7WH1/hXhtbVHotoW+9AW36Vp22aT6atWEwXggW5KDg Ozq0gTbjSquGR4LEQ4FL7Ffu37v3cR4JKeRhgbTmxtyftFn3tKT4vEe995uY ooSxVqZVzUd/OJ7pURQjUUV51msYnqoPQpmStRRPd4njNnOjgHldTF88IA+x 9j4QmjF3e6OsuxPetHTkHkoRhuAN8+EZ86mMe2IRY6iA698l9lvEkEvJoG8S GikQ2UKB1L6janquumrVvbw85GnaIJX+yP7SANeoJ4+1XpRfJL29UNCYe4Ka JR6yZpa3t3srrW3wUNmS8WPCPNYlb/H5ruTRgTZVk3iUCUp4RB7iubj3ldTr R9x2eM59s4o+eMx3H5BDAXPhNtf9ReIgrq/FetWT9coQsS1NEM/+MW7mgnfs /36ev+Q30rWB45HewgSZLXsju14v+qUb9aiTUxeur0kfib5m7aeP8qvlHnG9 tb+4dlc+o04cnTjftpqHSg2PfNbfLL6fT9s/oDyU8ItxpM+5HpL9b1THkiii La9IvaMBzqoZIZV7evb52Dp5SByq95TkwOXIYb1KV2GfyXqdQdyZxJbBvUyU LGK8KmhI/K7XrNeN62lSRL6diaMT8XRgfrSReJTQB+XkUUYeeUJ7qde4RduL /AvpvwJe36mO41zqyqGuLB4zKGmcSyC/qEZ6OKfCnnGg86/+71fmlhuXgJtt LJHUjD3zP/TYE2hTlyZ76i7cUztLIp6nEnM6+V2ulnTOXWZtyiLOa5Q8+uIt D7nmKkl7SArfjyG2LNr5hoT9beyIPsiR8qAbdYnrabGH12IP0x3n6ukgtIU+ UhlX6WHhH/VF7fgS7+cMn4gU9v9JDXtRlzbtoYl44o4lzgvVEkebx1MuVksC 55KIP52SLbSTeNwjjyL640H13nGb905QTzixxku2fmvzjBrba3I9DerWlLie I4cz9FVYcwPp2yqJ3zm/xaF2bGWHRyBP1Zx9gB4ufNaDOrshkvrPEu8ZxksE cZ6lRBJXJI9RlPOUWGJPpGRIPNqTRzvGfSvyUKW0kzDuaaiFY9QXRqwRvI4m rwv051vsGsSugdOUUD5zvL42QsnhrLIBUga64MmjR/9Vzy4OuXZlTZnN+muE WCUDRP5fT+rW5NpdqL8DjhPTCeI9QXuHUU5Swikip3jeF+PrOkXcO4r4XCnv FRBXOPewE6r6ONa4J0IaaPGbRAOHyeEYuYRK2DV4rokjfPYwnznSUg8RzInk /s64z+/P2vj+Gx4i3+L8fOSYj8CF5vy+ZM2OaNQTx7/ohhDG9wHa+gAxHyK+ EMpRYj1JzOd476KUN+rk0YU1rAv90Z77jh3SJs7EFfYT0SpGiGhthDA1fRxp qoODTbRxoEF3HPyyO0Ia9UBIMx0cbtELx5rrIaZ1b2S6T0NZScnv4iAPOf5u JqciT3cgLqjy+1/VCKeVdXGEcbH/i67YTcz7KAeJ9Wh1zEdLudmNdVKs+Rrk oYHSdv1wNz1D0pexax+yTIfjKuthHGtohJoCYSoGOK6ih9CWoujjrIoCca1N kGBoj+Qft38QJ7931OzxSanIthiJ1Fa9EdlSgTOqCoSq6uFoc10cVqaPaL/w Zuzfmuoh/is95npP5oe4l+njmps/Cqu/qWv+z/DgAdJ/3oNsNz9cNXHAZc2+ yOxih1RtW2T2GY6UCf68vxcPioqk5z/Fb/by2qWF95E6ZzGua9jicmtT+sdI io9o2jOGR9FfCTxeZX95o6Excod5Ijvs9Ad63q8zj5m398nz/o3bKLhz953f 3+p6/lNwEcftrGwkBq1FxshJSDEegoTuNkjsaYcUc8aKyzQkr9qA3MTkmufr +k3rt34XlX/H+yt+463r/x6VFRUo57fMo/Lymt+3fu35j+kVccvyR7H/B4mH njk= "], {{0, 50}, {50, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{50, 50}, PlotRange->{{0, 50}, {0, 50}}]\), \!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzFWgd8FWW+HXmKyupKh4AgRWkSqRKCgkhoCqtIl6JGepEuAST03kF6CiGB QEhIT0gjIRUC6YT0HhLSK+nlvPPdmRsSxLdvXcX5/Q4zd+6db8759xnS/cfV Uxc3kyRp/Rv8Z6qu3ufr1uluntaSH2asWr9syapFC79YtWHRkkXrhv/4Pzw5 WMGrBP7Erba2tsnn4uIi5OXlqvC07GnD+bq6OhX+zk3cv76+/jfn1RrKK8pg 42uMFecmQGeDBrQXt8GIRW0w+ee+0L+wHIEh/g3X1NTUvHCtl7mp7y/2ag2B 4X7YaDYHWita4oNpEnoTfadL6MN9nykSPuSx9oJO2HlmI9IfpzesJa5/2XqS EhPw9Gmp6rixb1wCbbDuki5G/NgL/b6VoDlPQn9Cc76Ej+byeA6Peb4fNfWb KWHM4h4wND+J8vLyl8ZdbW/bq5dgtHsZDI7uQEVFRcN35s7G2G6yBpPXaGP4 4ncwSFfCwO8lDPqu0V7ooa4Bc2UILX2IiUv649pNU+Tn5//lPlHnpJuDFZbM 0MEm3amwNDNBcUkxTtgcx9qLKzBj+wSMXNcLHy5ujp7U0Xsh7b9UwpCVzaG9 6h/4dM3b+GT12xi++p8YtPw19F/EmFvA3xFDlks4aLzppeRL41p08pg+1syf gi36S7HjZ01s0v8MK7ePwIotvbBxSzsc2NEaBoe6wuJUX9ifHQhng8FwMRwC Z6OPYW84CFfO9sH+Y52wal8znDBdjMjY8Ia1/yotjfO4rKwM5g6m2G3/E35a ponb5/qj1FFCzR0JZUS9H8v4XeIeEUD4NQd8WgLe7QGv7oBnL8BDkxhE52qj 5tZolN9ZgdQ7x5D00IOx+ixX/sy63Hgtn3uemL9/AvSsZmPXrZUwOUCeMUQB kafsc4ksIoNII5KJxH8CcZ35225AZDfUhXVFdVBnVAV0QpVPN1R59gbuDOMN xqHMeyke+t2gT6pV93y+H/2RTb1GVVUVDpjoYcAaCbOPD8eFoF046rIRBjsl FHqQ52MiR9GQq2jKbUZ04TFtnzeCx2P4m7FA5jjq43HiJ9Q1APUPu6P2wXuo 8u+FMo/eqHQbDPiOQ12AHlJiw/5rLSJGxZaYHIcFR3UwcLWEj9dK0LOZiZsJ RthtuxQXdkjIcSHn9Eb+ECikhkLavnAoUETOhZO4n0HM5fE8IJ/7nJn02VdA yueoj+2Huoj3UBvcE9W+fVHqOgAVLtR5dyaSgh3+sBb1NR537fH1we4YSj8M +EmCzi4JJg8P4VrkGeyzX4VTWyVkOSvxo9ZRSBQxJ4o+5FDyKTGB+BoomUUs 4PEyfkcULqUefs6aTX9+ifqkj1EX1Rs1YcTdvij3HIhCB23m2HRE+11pYtv/ RINdgDHGbuc8sfZNaK1nH14lYanZaFgmnMXV8JM47r4dx/UlpNuSd4oST0JH kaKjmPFU8hnxJTGVoB9KFvP8KmIt6ovWo75wNa9Zwmvpn8zJXGcY6mM0URuu iaq7/VVa8hxGU8scxAbe/H/7paHXBZniX8daYdS6jhi1uQW0NkgYvkXCHvel 1HEG1yJO45T3IRylf2LMyTueyH5eR79n/ij5Biid30QHijZQC1Gwhn5ZSC3f Ugt/mzwUdTEDURM+AJV3B+KphxaybXk+aCHiI3z/rRb1d5FxwZh+si1Gre6M cfpt8fkW9q6NEr463B5H/NbgasxxXAk9icOee3Bgr4QgA/J+pNSnfHVcCfQg RH7QnsXMg+I5hIir5TxH7kXrZBRQU8FKXqtLLdO4Dn3IGKuNHojqsMEo8/sY Ba6fIctmCuoC1yMnO1PVB15Uk9Xnq6oqse7GaHy2XgNjt3bEuF/aYaz+Oxj5 iwRd9q+D/ithGnUQFwP34Ren1dixW4LvKfaMECVHchUdKrBWFfaVc72QuV5E nxTTJ0X0SRF5F62S9RQKHYyv/EXMMeZ+tg7X0kZ9wlDUPBqCiqChKPb6BNn2 X6D41vfI9D38uz5R54+170V8cbANdH7uBB2hYWs7jGeOfL5dwlrLL6ljOXUc wimfrVhuMRubqMP9iMRYVvpEjuITEV/5Hbhn38tnnuSzNxSQXyHtXfgdQc6F zPWCFQqWKf5gTctmDD1mPCYPR12cFqoitFDqr4181zHIuDkNdX7LEX3f6YVa hD8qKyuwykoLn23oDJ2tHVQaxm1rg/E7W2H83ma0/xzs91+KKzFHcMhjPb6/ PB4/Mz+c9kko9VVyJKtR/1CBtTevDzGQPNlD8smxgDlfMFfmXbBQrln51JbP uMv9RtaRMVLlEyRqoSZKC+VBw1F4exSeOHyJDOtvVfGVn5f9wvi6H+WFKWc4 yzGmdLa2Zjy1xQT6YuLOf2DK0dbYeVsXe/x+xJXo49huvxBTLw7CBvZBeyJf 9MIoJbaylJwXvsmhT3Lok1zGVy7jK28U+U4kphDTCdbcPOZ33iw5N3LYZ56M kf0hdCRpMeeHoTJ0GEp8hiPHmT6xnoYKjwWI9zn3Qp8YeW3HxN0doLNJxFQb VY5P3EEtu17BvAt9scPzB+z104VxxH4sM/0Sk892wcZtEm4SWbfIOYxIUnq7 yPknak0dCeZ8dn/y1JL7ei615LEe506WIfhnjZc1iDwXOlL526ShqI8bgurw ISjzZ767jUSm3SSkW1O/32JkpCeruDf2yS+X50JnmwbGbGGO67dWYqo9xjN2 Vlwbhc3u03Hw7lIcC9iAWacHYvK5N7FFT4Ile0iqPfneV2atZMUv6Y00ZbAO Z3YiT8ZYNufDLMZYFmMniz37CTlncp9B+6cPJ5hLaVqq+ovEIez1A1iDNVHB GlzkORzZjmOpQ/hkPpL8zjXJb7GtOzcdY/Q70hcaKl+MV3RMZG5ssP8XVjuP xdHAVdjiPBeTj3THtPMSdq6kDtaApJucd/3JN4KIU/wiemOqgjS1Ns4r6e3I +X2Cs2EG4y2d2tL6ykilz1JYF5I+ogb2nzieY4+vDe+DivuaKPb+GLkuo5Fh NxlPOB/Vs+48LS1pyHGxrT87iz6ghl86y3VqG/OczxBfMTfWO07CCs4I+wOW YrH5SIw/2gHzf5Vw4EfGFf0VbyFx9ibPICVPYokEMecqmpKfg9CY8ibxDj+3 IDjTJ7NOJ7MuJFFjAvdx7wHRXVEf2R114T1R+eADPPUbjDz3Eciwn4C0m6wX PnOQGOHTJE82XZzHGivrGM96NX4ba9b2Fph9vieW2Ghhmd1gbHKbjhlnemH8 r63xE2f2E3yOs9kr9/Ri5nqteN4IbaQlTqljak1qPP85kX5KpK4EPqfEteG1 9Fk095EdUB+hgZrQd6mjG+uvJmvKMGQ6jGFsTeEsOQcpfqebxNZhqzWYuKsL xm0RcdWetaqDqlbNMeqDedc7YZGtJhZZajOmNDDp/CvYxTnlzDIJttQRdYU1 i3NvpY+SJ2FKj49Wcia2EeJ+B7HKb2MUOzx6jTPwa9TQClVB7VAe+C5K/Hoj //YQZDiMRKr1JOTYzkAx87VxXNlwLpzCuB/HeiV0jBc69ryD2SbvYSZ5/mD1 PmYbd1XF1LfMjdOcgS9wjrdn/3h4WWL+8XnwtoRqfyW+hJZIRU9UI0Sref4+ 6nldHXOthmtUBbdgbrRA6d22KPbtiTyPfki3G4Zkq7F4bDUFlXeWorzR+72E lGjoXv6QfbADdXTEBGLS/raYYdISM69K9ElXfHO2LUafbAO94xLMqMGE9cpp v4TwSxJzj89UrvKzrSq+HihaHip6GuPhM9RHPIPgXhtO/kQ1Z50K2qMskH2W 6xX7tUTBnbbIcfsAaXYDkWg5BknXJqHeez6yM5Ia6q/wy2HnJaq4mqAvcqQj JnM2nGnaHLOvvYHZV/j5OHH2dVwid4tNEsw5d906KCHUSEIKa1Yun0WK3Znz 3uTCWaX+gZIv4Uote6jsBe9wGXUC1FtL1IQK+xPkX874LOMzfgk1FHG9Aton x+NtZLp0QYptf9aWTxF79QvUuM9A/KMHTXLdk89eM0++j7F6XTCRWqacaos5 5i0w91obzDRuhzEnO2LzhdfhyViyYv+zYs11PSwh+KKERNasJ+wj+eyJJcz5 Ct67mlpqac86cqsLVTg/x7uGdq9WuFdSd3mgzL/0rvABfcycy/Ni3HLNTOZg muPbSLDuwdoyFFFm4/gcPAuPQnwbckRAzLt6FlMwdnMnfLG9K6ZeaIt5FkJL B3x9rhO+MWgHjzOt4H+I8bSHucE58TbnxAcXJMQx9h5by3lSwPuVMFfKqKWS +VJNXjXkWB0k81ZxD3nGveK+zP8puZfw90UK/3zyz+E6T7jeYyf2Wwf2Kj63 xVp1wqMrA5mXOii9NQuRQd6/mXntvM0w/cj7mLitC7411cB3N7pglkkXTDfX gMXV7og7oYGAExK86Ac3xtedYxLun2PNMmVsWdJmzJNs3rPAVa7FTxkP5Zwj KxkfldRTEfgMats38OfvCrxk++e4K/zp3zTyTyX/BBvai/Ebdb0dws16I8x4 JIodZyIm/G6DDvWMkpObhYUGI1hzNaBr2RPzzbthnn0nXPfRR47FVCSc74zQ kxLuUYs3feHLnL9/ljXLmPe5xvvdbKqliFqKPRkn9E0ZeZb5yXjK4xLuS3i+ kFoLaPc8cs9xlflnMNfSGafJ5J9IPydYsU/dkPDoOusK62eYyQcINtRGgeNs PE6O/s38LrZ9Visw5VgnLLT+AAtse8Hay1h1Pt71AAqu9sKj060QQi2BxF3i AXWEGUqINpPzJM1arl9ZjLFc2jPfjTypp4h6iryeQXDPJ/dcN3nWfCK4O8rz WoqdzD+e/GPJP4rrPmTshrLGBxMPjLtRB+ctpx9QVJjXRIf6faTVbWN8f7U3 ltkORECIV4PGlMQo1NoNQvz59tTCNYkHZxQdfL6NZP2NvSprSSWHx+TyxFF+ pyLeDwm+Il5yFO7ZLjL3TCeZfxp/n2wjz2vxRCzjNJprRXJeCKeNQkzoe9bG QBW6IsRwGNKc1/xmdld/Dot8gCX2fWHjflX1WbyHU3+X5LoNpdffQ9z5t/CQ GsKoIZj5EcJcD6dPHl2WtSTw/sm0ZSp5pZNfhqPMV/AWeKxwT1dsL/gnKrYX 3EX8CPuHCf4q+9P3tFUA7xNwUUADkSbaiL61uwn3xnFVUJAPCw/DJt+re0wh 8weuo5Fq2AGx5B8hfMH+HkyEcP0w2iqS941mDMcyXxJuyPySrWVNIl+TFSQK 7sL2ljL/GIW7sH0obR9kLNte8Pfj+j68lzdt53tOfNZAnPloBHv8+3dbz7/z VmtKDnMBHHog8WJbRHHtcMUnD87JvSTUUO7xkaxhUeQVzbiIJccYCzlWVJzV djeXuUeI3OXvg01k2wcayrb3JX9vru/FGPbkjH37lKzlDmfVhGsTkBQT/ht/ NOb/e++I1LoTvI6j3q4HfdIKEbxHyBm5bgVSy/3zck8JJpdQ6gmjf8JNZa4R CmcVbzMlb4XtL8mxf4+29+e1PlznDte8Te4erCVurIuuhDvr5B3ez/t0V0Td XIbq6qo/9H8MjTXmeuuj1KInfdIeobTTfa4fQPjx3n7kEHBOtmkgfRRoIPNU QYmXe4YyRLwL7iJehK2F3T24nhs5u7A/ObO+O7L3OrBn3TrKc0Sw0SDcc/3P 35c+r0XkSy2vz769CYXm/RD+a3sE8d4BtJ0P4Sl6Jfdep9T2k+PDR4E4vnNW trk6XtxPyjYXXJ3I2Z7c7fmcY0tY75dhz3nO+XAL3Ls0A/l5eQ2zyB/d1NcL 32T770GppSZCT3RE4Am5N3rRjm60o8sR2X4CrsdknsLGAk5HFVsLHJY5qjnf 5Ax3k7OPFWcfCz5zWnBvuUeGz9mP4OtkouLxZ/z/SGNbRPtcQoWtNiLPdkPA sebwJkc3cnMiL3vysiNsFdjsk3la7ZV53dgt87y+U8I1wnyHhKucQa9wFjVT IM7LWtrA12i26u8L/ltfPK9FPdPERwYi03EhMs0GIeBwR3gyLtxoYwdythYc BBdyNFc4CphulXBZgQmfAy7xOfPSZhlGm2SY6MvaLPe+Ba9f+8Hf0UB1vz+a F//Xpvav+L/oh55GyLWfjETmot+Rzri191XY7ZXfSVynBjPyvUy+JoIrn8WM 9eS94c8SDDbKe8ONCvSExmaMr7fhdPAtzob9kJGa+Lvvqv9MLWLLy32CUHcj PLb9DokmWgg+3QceBzVgu6s5LLe9iuv6zWBOH5hSy2Xa/JICcWy6+RXiDZht ac5ntXdwc0drOO97HSFiHr0xS7X+X/23Kc/3nsrKSsSE+uCRyzHOfLpIZQ9O uPQRws/3QuCpHvA/0QU+x97l7NwZPke7sEa8y/PdEHGhFx4asA4a9EekQS/E GrVEvPVX9EXcX+qLF+l5Pn7FuSeZKYiP8EFsgDkSvY4hwkYPITd+QojFCoRZ rUUM56U4P2NEBNgjJTYYyYmxSEtJwOO0pCZ/z/KyN7V//oz6KLa/+2+dxNbQ P6lJ+Ers1X+HpUbj757//u/++6aXtf0v11tJ+g== "], {{0, 50}, {50, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{50, 50}, PlotRange->{{0, 50}, {0, 50}}]\), CloudGet["https://wolfr.am/QRLuEfy7"]}; |
✕
fruitroller[fruits_] := With[{roll = RandomChoice[fruits, 3]},Column[{Row@roll, Which[SameQ @@ roll, Text["Winner"],DuplicateFreeQ[roll], Text["Loser"],True, Text["Try again"]]}]] |
✕
fruitroller[fruits] |
In a mini-project from the final week of this introductory program, participants used geographic functionality to explore the well-known traveling salesman problem by creating a map of the shortest tour connecting all African countries:
✕
With[{africa = CountryData[Entity["GeographicRegion", "Africa"]]},GeoGraphics[{Thick, Red, GeoPath@Part[africa, FindShortestTour@EntityValue[africa, "Position"] // Last]}]] |
Building Skills, Exploring More Courses and Certifications
Daily Study Group sessions during the month of May were devoted to more advanced programming concepts. Wolfram certified instructor Jayanta Phadakar presented lessons on functions, expressions, patterns and package development, among other topics. The Programming Fundamentals series was our most popular Study Group, with over three thousand participants during the month. This extensive program required an extended commitment from participants, with almost 10% successfully completing assigned exercises to earn Level I Certification in Wolfram Language Programming Fundamentals.
In June and July our Study Groups branched out to dive into topics from Wolfram U interactive courses including Introduction to Notebooks, Introduction to Image Processing and Multiparadigm Data Science. Wolfram U course authors and veteran instructors Dave Withoff and Abrita Chakravarty provided insights from their courses and encouraged everyone to take the full interactive courses and pursue the certifications available there.
This Study Group represented an interesting mix of members, attracting more academic and business professionals and fewer students than our previous groups:
We were impressed by the interaction among the diverse participants, who learned a lot by helping each other work through problems. Many attendees agreed that these informal discussions taking place on Wolfram Community and in the Study Group chat provided invaluable perspective that helped them further solidify their understanding of the concepts.
Special-Interest Study Groups: Mathematics, Modeling and Analysis
The remainder of the 2020 Daily Study Groups have been devoted to specific topics in mathematics, modeling and COVID-19 data analysis. The three-week calculus group was scheduled just prior to the start of the new school year in August and proved to be our second most popular group. Many group members were interested to learn calculus functionality, of course, but others used the Study Group to explore teaching techniques and methods for supporting their students.
Our linear algebra Study Group just wrapped at the end of October, advancing our progression of mathematics topics. We hope to cover more math material in future sessions. (Until then, check out self-study math courses from Wolfram U.)
System modeling was the focus of another Study Group in September. We were surprised to see in our first-day poll that 87% of the group entered with little to no prior knowledge of the subject:
The challenge for our instructors was to offer a full range of examples and topics to cater to different interests and experience levels. Their efforts paid off; at the end of the weeklong program, our poll showed that every category was useful to at least some of our participants:
Our subsequent data analysis Study Group focused on computations using publicly available COVID-19 epidemic data from the Wolfram Data Repository. This Study Group expanded on the fast-paced lessons from the similarly named Wolfram U video course, taking time to explain concepts and field questions from the group.
Up Next: Machine Learning… Then Start Again!
Heading into the final two months of the year, we have time to squeeze in a couple more Daily Study Groups. We’re having too much fun to stop now!
Machine learning in the Wolfram Language is a topic that is in high demand, and we have plans for two new groups. The first will spend a week in November covering machine learning basics such as supervised and unsupervised learning, neural networks and the built-in machine learning functions in the Wolfram Language. The second group will follow this introductory week and will feature explorations in biodiversity using machine learning.
We’ll continue Daily Study Groups in 2021, starting fresh with a reprise of introductory Wolfram Language topics. We’re also planning to explore bundles of the beautiful new workflows featured in Wolfram Language documentation on topics from data analysis to API deployment, as well as the tremendous catalog of training material in our Wolfram U archives. Visit Wolfram U to browse our collection of self-directed courses and available certifications.
With all this new material, we have a little something for everyone. So sign up for one of our upcoming Daily Study Groups, check out the archived content from our previous sessions and let us know if you have any suggestions for topics. We hope to see you soon—and until then, never stop learning!
Special Thanks
At Wolfram, we’re fortunate to be surrounded by colleagues with specialized fields of interests and experience in academia and teaching. We’re thankful for all the Study Group instructors and teaching assistants who have helped us to provide such a rich resource to so many, and we’re inspired by the folks from all sorts of backgrounds, from all around the world, who have participated in Daily Study Groups. In short, the secret to the success of Wolfram Daily Study Groups comes down to a combination of talented instructors, reliable event management and the power of the Wolfram Language. Running a daily online program is a big task and requires much coordination and teamwork. My thanks go to Cassidy Hinkle, technical project manager for Wolfram U, and all the instructors and teaching assistants who helped make Daily Study Groups a reality.
Check out Wolfram U for a wealth of free interactive courses, video courses and special events. |
Comments