December 16, 2015 — Håkan Wettergren, Applications Engineer, SystemModeler (MathCore)

Explore the contents of this article with a free Wolfram SystemModeler trial.

Background

Today, many helicopters launch from and land on ships at sea. Some are conventional helicopters, both commercial and military, and some are drones. In Wolfram SystemModeler, we now have a system for simulating helicopter landings and launches that includes waves and ships. The models have been used for the design of mechanical parts, autopilots, landing criteria, and operational limits.

Major components of the system

The aim has been to develop a model with an accurate depiction of the waves, ship motion, and helicopters in such a way that the results can be used not only qualitatively but also quantitatively in real industrial applications.

The first task is to calculate the motion of the landing platform mounted on the ship’s deck. There is commercially available historical wave data for different seas and oceans. Since access to this data is expensive, we will instead describe the waves mathematically. A model of the forces on the ship’s hull was developed with classical analytical theory. With the waves and ship hull forces, the motion of the ship’s landing platform can be calculated. If we assume that the helicopter landing does not influence the landing platform motion, the system is simplified. We speed up the simulation by storing the motion in a database for the different wave heights, lengths, and directions, and the ship’s speed. Typically the database will include wave heights of 1, 2, 3, and 4 m; wave directions 0, 30, 60, 90, 120, 150, and 180 degrees; wave lengths 100, 150, and 200 m; and ship speeds of 5 and 10 knots. The helicopter was modeled with the MultiBody library. It includes mechanical parts such as rotors with gyroscopic effects and landing gear with hydraulic dampers. Friction models for wheel-deck interface and flexible beams for the rotor blades have been developed. We have also developed a simple autopilot where the landing algorithm is implemented and tested. For one application, the model has been run with the actual autopilot as hardware in the loop.

Read More »


December 2, 2015 — Johan Rhodin, Kernel Developer

Explore the contents of this article with a free Wolfram SystemModeler trial.Today marks the release of Wolfram SystemModeler 4.2.

I’ll outline some of the new features and improvements we’ve done since Version 4.1. You could say that there are three main pieces to this release: usability, performance, and integration. Let’s take them one by one.

Usability, Performance, Integration word clouds

Usability

The first improvement you’ll notice as a user opening the product is that the diagram area is easier to understand, with crossing-line detection and joint connection points marked with solder dots:

Diagram improvement

Read More »


November 30, 2015 — Wolfram Blog Team

Cyber Week savings from Wolfram. Get 25% off select software when you buy now until December 6, 2015.

It’s that time of year again and the holidays are upon us. Whatever your gifting traditions, Wolfram has perfect solutions for the tech lovers on your shopping list. From now until December 6, we are offering Cyber Week savings around the world, including North and South America, Australia, and parts of Asia and Africa.

Read More »


November 24, 2015 — Håkan Wettergren, Applications Engineer, SystemModeler (MathCore)

Explore the contents of this article with a free Wolfram SystemModeler trial.

Background

Teachers and textbook authors often need to simplify a real-world problem to pinpoint a specific area to work with—for instance, the examples in a textbook. However, even in real-world engineering, simplifying a problem can bring clarity when our understanding might otherwise drown in a sea of details. In this blog, we will design the landing gear for a helicopter. I have chosen the example of landing gear because the simplification to one degree of freedom gives accurate results and is typically how the problem is treated in textbooks. The solution is attainable through hand calculation. But a more subtle understanding of the problem can be gained using the Wolfram Language and Wolfram SystemModeler.

Helicopter

Read More »


August 26, 2015 — Patrik Ekenberg, Applications Engineer, Wolfram MathCore

Explore the contents of this article with a free Wolfram SystemModeler trial.Wouldn’t it be great if you could easily connect your simulation models to your existing infrastructure? Whether you are working in industries such as oil and gas, industrial energy, or life sciences, connecting to your processes in order to monitor and control them is vital.

The OPC (Object Linking and Embedding for Process Control) standard has been developed by industry and the OPC Foundation just for that purpose. OPC is a set of data transfer standards for multi-vendor, multi-platform, secure, and reliable interoperability in industrial automation:

OPC illustarted as a set of data transfer standards

Read More »


June 9, 2015 — Anneli Mossberg

Explore the contents of this article with a free Wolfram SystemModeler trial.The SystemModeler Library Store, launched with the release of Wolfram SystemModeler 4, is continually growing with free and purchasable libraries developed by both Wolfram and third parties. One of our commercial newcomers is SmartCooling, a Modelica library developed by the Austrian Institute of Technology (AIT) that is used for modeling and simulating cooling circuits. When I was asked to present this library on our blog, my first thought was, “Who better to demonstrate the ideas of SmartCooling than the people who actually developed it?” So I asked Thomas Bäuml, one of the creators of SmartCooling, to help answer some of my questions regarding the principles behind the library and its applications.

SystemModeler and SmartCooling array

Read More »


April 8, 2015
Johan Rhodin, Kernel Developer
Henrik Tidefelt, Software Engineer

Explore the contents of this article with a free Wolfram SystemModeler trial.An important emerging standard has been rapidly adopted by industry: the Functional Mock-up Interface (FMI). It’s an independent standard allowing model exchange between different tools. We introduced FMI export with Version 4.0 of SystemModeler. Exporting your model as a Functional Mock-up Unit (FMU) serves many purposes. First and foremost, it can be used in other tools and programming languages. It also protects your intellectual property by compiling the model code to a binary, which is useful when exchanging models with customers and collaborators. Now with Version 4.1 of SystemModeler, we are happy to announce that we also support FMI import.

Use subsystems from other tools in FMI import

Read More »


March 25, 2015
Jan Brugård, CEO, Wolfram MathCore
Johan Rhodin, Kernel Developer

Explore the contents of this article with a free Wolfram SystemModeler trial.Today we are proud to announce the release of Wolfram SystemModeler 4.1. We will present some of the news in blog posts, beginning with this one, in which we will highlight the new reliability functionality.

We will illustrate this with an example, and you can try it out by downloading a trial version of SystemModeler and this example model, and a trial of the Wolfram Hydraulic library.

Most people probably have experiences with things they bought and liked, but that then suddenly failed for some reason. During the last few years we have both experienced this problem, including a complete engine breakdown in Johan’s car (the engine had to be replaced), and Jan’s receiver, which suddenly went completely silent (the receiver had to be sent in for repair and have its network chip replaced).

In both cases it caused problems for the customers (us) as well as for the producer. These are just a couple of examples, and we’re sure you have your own.

amplifier, satelitte, airplane

Read More »


February 11, 2015 — Johan Rhodin, Kernel Developer

Modelica is the object-oriented modeling language used in SystemModeler to model components and systems. When I first learned Modelica, I read all books available about the language (there are not that many!) and found the book Introduction to Physical Modeling with Modelica by Michael Tiller to be the best out there.

In 2012, when Michael started a Kickstarter campaign to fund the development of a Creative Commons licensed book about Modelica, I was the first person to back it, and Wolfram Research became one of the gold sponsors of the book. A new key feature in SystemModeler 4.0 is the full Modelica by Example book included in the product. This makes it much easier to get started learning Modelica.

I had the opportunity to ask Michael a couple of questions about the new book and Modelica.

Michael and Johan

Read More »


January 6, 2015 — Mikael Forsgren, Wolfram MathCore

Explore the contents of this article with a free Wolfram SystemModeler trial.Mathematical modeling is not just used for understanding and designing new products and drugs; modeling can also be used in health care, and in the future, your doctor might examine your liver with a mathematical model just like the one researchers at AstraZeneca have developed.

Liver

The liver is a vital organ, and currently there isn’t really a way to compensate for loss of liver function in the long term. The liver performs a wide range of functions, including detoxification, protein synthesis, and secretion of compounds necessary for digestion, just to mention a few. In the US and Europe, up to 15 % of all acute liver failure cases are due to drug-induced liver injury, and the risk of injuring the liver is of major concern in testing new drug candidates. So in order to safely monitor the impact of a new drug candidate on the liver, researchers at the pharmaceutical company AstraZeneca have recently published a method for evaluating liver function that combines magnetic resonance imaging (MRI) and mathematical modeling—potentially allowing for early identification of any reduced liver function in humans.

Last year, Wolfram MathCore and AstraZeneca worked together on a project where we investigated some modifications of AstraZeneca’s modeling framework. We presented the promising results at the ISMRM-ESMRMB Joint Annual Meeting, which is the major international magnetic resonance conference. In this blog post, I’ll show how the Wolfram Language was used to calculate liver function and how more complex models of liver function can be implemented in Wolfram SystemModeler.

Read More »