Wolfram Blog
Zach Littrell

New Wolfram Language Books

August 26, 2016 — Zach Littrell, Technical Content Writer, Technical Communications and Strategy Group

We are constantly surprised by what fascinating applications and topics Wolfram Language experts are writing about, and we’re happy to again share with you some of these amazing authors’ works. With topics ranging from learning to use the Wolfram Language on a Raspberry Pi to a groundbreaking book with a novel approach to calculations, you are bound to find a publication perfect for your interests.

Getting Started with Wolfram Language and Mathematica for Raspberry Pi, Essentials of Programming in Mathematica, Geospatial Algebraic Computations, Theory and Applications

Getting Started with Wolfram Language and Mathematica for Raspberry Pi, Kindle Edition

If you’re interested in the Raspberry Pi and how the Wolfram Language can empower the device, then you ought to check out this ebook by Agus Kurniawan. The author takes you through the essentials of coding with the Wolfram Language in the Raspberry Pi environment. Pretty soon you’ll be ready to try out computational mathematics, GPIO programming and serial communication with Kurniawan’s step-by-step approach.

Essentials of Programming in Mathematica

Whether you are already familiar with programming or completely new to it, Essentials of Programming in Mathematica provides an excellent example-driven introduction for both self-study and a course in programming. Paul Wellin, an established authority on Mathematica and the Wolfram Language, covers the language from first principles to applications in natural language processing, bioinformatics, graphs and networks, signal analysis, geometry, computer science and much more. With tips and insight from a Wolfram Language veteran and more than 350 exercises, this volume is invaluable for both the novice and advanced Wolfram Language user.

Geospatial Algebraic Computations, Theory and Applications, Third Edition

Advances in geospatial instrumentation and technology such as laser scanning have resulted in tons of data—and this huge amount of data requires robust mathematical solutions. Joseph Awange and Béla Paláncz have written this enhanced third edition to respond to these new advancements by including robust parameter estimation, multi-objective optimization, symbolic regression and nonlinear homotopy. The authors cover these disciplines with both theoretical explorations and numerous applications. The included electronic supplement contains these theoretical and practical topics with corresponding Mathematica code to support the computations.

Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation, Micromechanics with Mathematica, Tendências Tecnológicas em Computação e Informática (Portuguese), The End of Error: Unum Computing

Boundary Integral Equation Methods and Numerical Solutions: Thin Plates on an Elastic Foundation

For graduate students and researchers, authors Christian Constanda, Dale Doty and William Hamill present a general, efficient and elegant method for solving the Dirichlet, Neumann and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. Utilizing Mathematica’s computational and graphics capabilities, the authors discuss both analytical and highly accurate numerical solutions for these sort of problems, and both describe the methodology and derive properties with full mathematical rigor.

Micromechanics with Mathematica

Seiichi Nomura demonstrates the simplicity and effectiveness of Mathematica as the solution to practical problems in composite materials, requiring no prior programming background. Using Mathematica’s computer algebra system to facilitate mathematical analysis, Nomura makes it practical to learn micromechanical approaches to the behavior of bodies with voids, inclusions and defects. With lots of exercises and their solutions on the companion website, students will be taken from the essentials, such as kinematics and stress, to applications involving Eshelby’s method, infinite and finite matrix media, thermal stresses and much more.

Tendências Tecnológicas em Computação e Informática (Portuguese)

For Portuguese students and researchers interested in technological trends in computation and informatics, this book is a real treat. The authors—Leandro Augusto Da Silva, Valéria Farinazzo Martins and João Soares De Oliviera Neto—gathered studies from both research and the commercial sector to examine the topics that mark current technological development. Read about how challenges in contemporary society encourage new theories and their applications in software like Mathematica. Topics include the semantic web, biometry, neural networks, satellite networks in logistics, parallel computing, geoprocessing and computation in forensics.

The End of Error: Unum Computing

Written with Mathematica by John L. Gustafson, one of the foremost experts in high-performance computing and the inventor of Gustafson’s law, The End of Error: Unum Computing explains a new approach to computer arithmetic: the universal number (unum). The book discusses this new number type, which encompasses all IEEE floating-point formats, obtains more accurate answers, uses fewer bits and solves problems that have vexed engineers and scientists for decades. With rich illustrations and friendly explanations, it takes no more than high-school math to learn about Gustafson’s novel and groundbreaking unum.

Want to find even more Wolfram technologies books? Visit Wolfram Books to discover books ranging across both topics and languages.

Leave a Comment

No Comments

Leave a comment


Or continue as a guest (your comment will be held for moderation):