## Celebrate National Coloring Book Day with Wolfram (and Four Crayons)

August 2, 2016 — Zach Littrell, Technical Content Writer, Technical Communications and Strategy Group

Happy National Coloring Book Day! When my coworkers suggested that I write a blog post celebrating this colorful occasion, I was, frankly, tickled pink by the idea. Coloring is a fun, therapeutic activity for anyone of any age who can color inside the lines—or occasionally just a little outside, if they’re more like me. And as the newest member of the Wolfram Blog team, I wanted to see in what fun ways I could add a little color to the Wolfram Blog.

While looking through Wolfram|Alpha’s massive collection of popular curves, from Pokémon to ALF to Stephen Wolfram, I realized that all of the images built into the Wolfram Knowledgebase would be great for coloring. So, I figured, why not make my own Wolfram coloring book in Mathematica? Carpe colores!

Each of the popular curves in the Knowledgebase can be accessed as an Entity in the Wolfram Language and comes with a wide variety of properties, including their parametric equations. But there’s no need to plot them yourself—they also conveniently come with an "Image" property already included:

## A Mathematical Snowstorm, or How I Survived a Blizzard of Koch-like Snowflakes

February 3, 2016 — Bernat Espigulé-Pons, Consultant, Technical Communications and Strategy Group

When I hear about something like January’s United States blizzard, I remember the day I was hit by the discovery of an infinitely large family of Koch-like snowflakes.

The Koch snowflake (shown below) is a popular mathematical curve and one of the earliest fractal curves to have been described. It’s easy to understand because you can construct it by starting with a regular hexagon, removing the inner third of each side, building an equilateral triangle at the location where the side was removed, and then repeating the process indefinitely:

If you isolate the hexagon’s lower side in the process above you’ll get the Koch curve, described in a 1904 paper by Helge von Koch (1870–1924). It has a long history that goes back way before the age of computer graphics. See, for example, this handmade drawing by the French mathematician Paul Lévy (1886–1971):